mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Allow tests in examples to use cuda or fp16,if they are available The tests in examples didn't use the cuda or fp16 even if they where available. - The text classification example (`run_glue.py`) didn't use the fp16 even if it was available but the device was take based on the availablity(cuda/cpu). - The language-modeling example (`run_language_modeling.py`) was having `--no_cuda` argument which made the test to work without cuda. This example is having issue when running with fp16 thus it not enabled (got an assertion error for perplexity due to it higher value). - The cuda and fp16 is not enabled for question-answering example (`run_squad.py`) as it is having a difference in the f1 score. - The text-generation example (`run_generation.py`) will take the cuda or fp16 whenever it is available. Resolves some of: #5057 * Unwanted import of is_apex_available was removed * Made changes to test examples file to have the pass --fp16 only if cuda and apex is avaliable - run_glue.py: Removed the check for cuda and fp16. - run_generation.py: Removed the check for cuda and fp16 also removed unwanted flag creation. * Incorrectly sorted imports fixed * The model needs to be converted to half precision * Formatted single line if condition statement to multiline * The torch_device also needed to be checked before running the test on examples - The tests in examples which uses cuda should also depend from the USE_CUDA flag, similarly to the rest of the test suite. Even if we decide to set USE_CUDA to True by default, setting USE_CUDA to False should result in the examples not using CUDA * Format some of the code in test_examples file * The improper import of is_apex_available was sorted * Formatted the code to keep the style standards * The comma at the end of list giving a flake8 issue was fixed * Import sort was fixed * Removed the clean_test_dir function as its not used right now
206 lines
6.6 KiB
Python
206 lines
6.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 HuggingFace Inc..
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
|
|
from transformers.file_utils import is_apex_available
|
|
from transformers.testing_utils import TestCasePlus, torch_device
|
|
|
|
|
|
SRC_DIRS = [
|
|
os.path.join(os.path.dirname(__file__), dirname)
|
|
for dirname in ["text-generation", "text-classification", "language-modeling", "question-answering"]
|
|
]
|
|
sys.path.extend(SRC_DIRS)
|
|
|
|
|
|
if SRC_DIRS is not None:
|
|
import run_generation
|
|
import run_glue
|
|
import run_language_modeling
|
|
import run_pl_glue
|
|
import run_squad
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
def get_setup_file():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-f")
|
|
args = parser.parse_args()
|
|
return args.f
|
|
|
|
|
|
def is_cuda_and_apex_avaliable():
|
|
is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
|
|
return is_using_cuda and is_apex_available()
|
|
|
|
|
|
class ExamplesTests(TestCasePlus):
|
|
def test_run_glue(self):
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_glue.py
|
|
--model_name_or_path distilbert-base-uncased
|
|
--data_dir ./tests/fixtures/tests_samples/MRPC/
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--task_name mrpc
|
|
--do_train
|
|
--do_eval
|
|
--per_device_train_batch_size=2
|
|
--per_device_eval_batch_size=1
|
|
--learning_rate=1e-4
|
|
--max_steps=10
|
|
--warmup_steps=2
|
|
--seed=42
|
|
--max_seq_length=128
|
|
"""
|
|
output_dir = "./tests/fixtures/tests_samples/temp_dir_{}".format(hash(testargs))
|
|
testargs += "--output_dir " + output_dir
|
|
testargs = testargs.split()
|
|
|
|
if is_cuda_and_apex_avaliable():
|
|
testargs.append("--fp16")
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
result = run_glue.main()
|
|
del result["eval_loss"]
|
|
for value in result.values():
|
|
self.assertGreaterEqual(value, 0.75)
|
|
|
|
def test_run_pl_glue(self):
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_pl_glue.py
|
|
--model_name_or_path bert-base-cased
|
|
--data_dir ./tests/fixtures/tests_samples/MRPC/
|
|
--output_dir {tmp_dir}
|
|
--task mrpc
|
|
--do_train
|
|
--do_predict
|
|
--train_batch_size=32
|
|
--learning_rate=1e-4
|
|
--num_train_epochs=1
|
|
--seed=42
|
|
--max_seq_length=128
|
|
""".split()
|
|
if torch.cuda.is_available():
|
|
testargs += ["--fp16", "--gpus=1"]
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
result = run_pl_glue.main()
|
|
# for now just testing that the script can run to a completion
|
|
self.assertGreater(result["acc"], 0.25)
|
|
#
|
|
# TODO: this fails on CI - doesn't get acc/f1>=0.75:
|
|
#
|
|
# # remove all the various *loss* attributes
|
|
# result = {k: v for k, v in result.items() if "loss" not in k}
|
|
# for k, v in result.items():
|
|
# self.assertGreaterEqual(v, 0.75, f"({k})")
|
|
#
|
|
|
|
def test_run_language_modeling(self):
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_language_modeling.py
|
|
--model_name_or_path distilroberta-base
|
|
--model_type roberta
|
|
--mlm
|
|
--line_by_line
|
|
--train_data_file ./tests/fixtures/sample_text.txt
|
|
--eval_data_file ./tests/fixtures/sample_text.txt
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--do_train
|
|
--do_eval
|
|
--num_train_epochs=1
|
|
"""
|
|
output_dir = "./tests/fixtures/tests_samples/temp_dir_{}".format(hash(testargs))
|
|
testargs += "--output_dir " + output_dir
|
|
testargs = testargs.split()
|
|
|
|
if torch_device != "cuda":
|
|
testargs.append("--no_cuda")
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
result = run_language_modeling.main()
|
|
self.assertLess(result["perplexity"], 35)
|
|
|
|
def test_run_squad(self):
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_squad.py
|
|
--model_type=distilbert
|
|
--model_name_or_path=sshleifer/tiny-distilbert-base-cased-distilled-squad
|
|
--data_dir=./tests/fixtures/tests_samples/SQUAD
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--max_steps=10
|
|
--warmup_steps=2
|
|
--do_train
|
|
--do_eval
|
|
--version_2_with_negative
|
|
--learning_rate=2e-4
|
|
--per_gpu_train_batch_size=2
|
|
--per_gpu_eval_batch_size=1
|
|
--seed=42
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
result = run_squad.main()
|
|
self.assertGreaterEqual(result["f1"], 25)
|
|
self.assertGreaterEqual(result["exact"], 21)
|
|
|
|
def test_generation(self):
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
|
|
|
|
if is_cuda_and_apex_avaliable():
|
|
testargs.append("--fp16")
|
|
|
|
model_type, model_name = (
|
|
"--model_type=gpt2",
|
|
"--model_name_or_path=sshleifer/tiny-gpt2",
|
|
)
|
|
with patch.object(sys, "argv", testargs + [model_type, model_name]):
|
|
result = run_generation.main()
|
|
self.assertGreaterEqual(len(result[0]), 10)
|