mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 09:40:06 +06:00
234 lines
9.3 KiB
Python
234 lines
9.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 XXX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization class for model XXX."""
|
|
|
|
|
|
import collections
|
|
import logging
|
|
import os
|
|
|
|
from .tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
####################################################
|
|
# In this template, replace all the XXX (various casings) with your model name
|
|
####################################################
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to file names for serializing Tokenizer instances
|
|
####################################################
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to pretrained vocabulary URL for all the model shortcut names.
|
|
####################################################
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
"vocab_file": {
|
|
"xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-vocab.txt",
|
|
"xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-vocab.txt",
|
|
}
|
|
}
|
|
|
|
####################################################
|
|
# Mapping from model shortcut names to max length of inputs
|
|
####################################################
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
"xxx-base-uncased": 512,
|
|
"xxx-large-uncased": 512,
|
|
}
|
|
|
|
####################################################
|
|
# Mapping from model shortcut names to a dictionary of additional
|
|
# keyword arguments for Tokenizer `__init__`.
|
|
# To be used for checkpoint specific configurations.
|
|
####################################################
|
|
PRETRAINED_INIT_CONFIGURATION = {
|
|
"xxx-base-uncased": {"do_lower_case": True},
|
|
"xxx-large-uncased": {"do_lower_case": True},
|
|
}
|
|
|
|
|
|
def load_vocab(vocab_file):
|
|
"""Loads a vocabulary file into a dictionary."""
|
|
vocab = collections.OrderedDict()
|
|
with open(vocab_file, "r", encoding="utf-8") as reader:
|
|
tokens = reader.readlines()
|
|
for index, token in enumerate(tokens):
|
|
token = token.rstrip("\n")
|
|
vocab[token] = index
|
|
return vocab
|
|
|
|
|
|
class XxxTokenizer(PreTrainedTokenizer):
|
|
r"""
|
|
Constructs a XxxTokenizer.
|
|
:class:`~transformers.XxxTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
|
|
|
|
Args:
|
|
vocab_file: Path to a one-wordpiece-per-line vocabulary file
|
|
do_lower_case: Whether to lower case the input. Only has an effect when do_basic_tokenize=True
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
do_lower_case=True,
|
|
unk_token="[UNK]",
|
|
sep_token="[SEP]",
|
|
pad_token="[PAD]",
|
|
cls_token="[CLS]",
|
|
mask_token="[MASK]",
|
|
**kwargs
|
|
):
|
|
"""Constructs a XxxTokenizer.
|
|
|
|
Args:
|
|
**vocab_file**: Path to a one-wordpiece-per-line vocabulary file
|
|
**do_lower_case**: (`optional`) boolean (default True)
|
|
Whether to lower case the input
|
|
Only has an effect when do_basic_tokenize=True
|
|
"""
|
|
super(XxxTokenizer, self).__init__(
|
|
unk_token=unk_token,
|
|
sep_token=sep_token,
|
|
pad_token=pad_token,
|
|
cls_token=cls_token,
|
|
mask_token=mask_token,
|
|
**kwargs
|
|
)
|
|
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
|
|
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens
|
|
|
|
if not os.path.isfile(vocab_file):
|
|
raise ValueError(
|
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
|
"model use `tokenizer = XxxTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
|
|
)
|
|
self.vocab = load_vocab(vocab_file)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.vocab)
|
|
|
|
def _tokenize(self, text):
|
|
""" Take as input a string and return a list of strings (tokens) for words/sub-words
|
|
"""
|
|
split_tokens = []
|
|
if self.do_basic_tokenize:
|
|
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
|
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
|
split_tokens.append(sub_token)
|
|
else:
|
|
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
|
return split_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str) in an id using the vocab. """
|
|
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.ids_to_tokens.get(index, self.unk_token)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
""" Converts a sequence of tokens (string) in a single string. """
|
|
out_string = " ".join(tokens).replace(" ##", "").strip()
|
|
return out_string
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
|
by concatenating and adding special tokens.
|
|
A BERT sequence has the following format:
|
|
single sequence: [CLS] X [SEP]
|
|
pair of sequences: [CLS] A [SEP] B [SEP]
|
|
"""
|
|
if token_ids_1 is None:
|
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
sep = [self.sep_token_id]
|
|
return cls + token_ids_0 + sep + token_ids_1 + sep
|
|
|
|
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
|
|
"""
|
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
|
|
|
Args:
|
|
token_ids_0: list of ids (must not contain special tokens)
|
|
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
|
|
for sequence pairs
|
|
already_has_special_tokens: (default False) Set to True if the token list is already formated with
|
|
special tokens for the model
|
|
|
|
Returns:
|
|
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
|
|
if already_has_special_tokens:
|
|
if token_ids_1 is not None:
|
|
raise ValueError(
|
|
"You should not supply a second sequence if the provided sequence of "
|
|
"ids is already formated with special tokens for the model."
|
|
)
|
|
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
|
|
|
if token_ids_1 is not None:
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
|
return [1] + ([0] * len(token_ids_0)) + [1]
|
|
|
|
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
|
|
"""
|
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
|
|
A BERT sequence pair mask has the following format:
|
|
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence
|
|
|
|
if token_ids_1 is None, only returns the first portion of the mask (0's).
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
if token_ids_1 is None:
|
|
return len(cls + token_ids_0 + sep) * [0]
|
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
|
|
|
def save_vocabulary(self, vocab_path):
|
|
"""Save the tokenizer vocabulary to a directory or file."""
|
|
index = 0
|
|
if os.path.isdir(vocab_path):
|
|
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"])
|
|
else:
|
|
vocab_file = vocab_path
|
|
with open(vocab_file, "w", encoding="utf-8") as writer:
|
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning(
|
|
"Saving vocabulary to {}: vocabulary indices are not consecutive."
|
|
" Please check that the vocabulary is not corrupted!".format(vocab_file)
|
|
)
|
|
index = token_index
|
|
writer.write(token + "\n")
|
|
index += 1
|
|
return (vocab_file,)
|