transformers/examples/distillation/scripts/binarized_data.py
2019-08-28 03:59:48 +00:00

60 lines
1.9 KiB
Python

import argparse
import pickle
import random
import time
import numpy as np
from pytorch_transformers import BertTokenizer
from ..utils import logger
def main():
parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
parser.add_argument('--file_path', type=str, default='data/dump.txt',
help='The path to the data.')
parser.add_argument('--bert_tokenizer', type=str, default='bert-base-uncased',
help="The tokenizer to use.")
parser.add_argument('--dump_file', type=str, default='data/dump',
help='The dump file prefix.')
args = parser.parse_args()
logger.info(f'Loading Tokenizer ({args.bert_tokenizer})')
bert_tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
logger.info(f'Loading text from {args.file_path}')
with open(args.file_path, 'r', encoding='utf8') as fp:
data = fp.readlines()
logger.info(f'Start encoding')
logger.info(f'{len(data)} examples to process.')
rslt = []
iter = 0
interval = 10000
start = time.time()
for text in data:
text = f'[CLS] {text.strip()} [SEP]'
token_ids = bert_tokenizer.encode(text)
rslt.append(token_ids)
iter += 1
if iter % interval == 0:
end = time.time()
logger.info(f'{iter} examples processed. - {(end-start)/interval:.2f}s/expl')
start = time.time()
logger.info('Finished binarization')
logger.info(f'{len(data)} examples processed.')
dp_file = f'{args.dump_file}.{args.bert_tokenizer}.pickle'
rslt_ = [np.uint16(d) for d in rslt]
random.shuffle(rslt_)
logger.info(f'Dump to {dp_file}')
with open(dp_file, 'wb') as handle:
pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
main()