mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* More limited setup -> setupclass conversion * make fixup * Trigger tests * Fixup UDOP * Missed a spot * tearDown -> tearDownClass where appropriate * Couple more class fixes * Fixups for UDOP and VisionTextDualEncoder * Ignore errors when removing the tmpdir, in case it already got cleaned up somewhere * CLIP fixes * More correct classmethods * Wav2Vec2Bert fixes * More methods become static * More class methods * More class methods * Revert changes for integration tests / modeling files * Use a different tempdir for tests that actually write to it * Remove addClassCleanup and just use teardownclass * Remove changes in modeling files * Cleanup get_processor_dict() for got_ocr2 * Fix regression on Wav2Vec2BERT test that was masked by this before * Rework tests that modify the tmpdir * make fix-copies * revert clvp modeling test changes * Fix CLIP processor test * make fix-copies
345 lines
13 KiB
Python
345 lines
13 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import (
|
|
require_tf,
|
|
require_torch,
|
|
require_torchvision,
|
|
require_vision,
|
|
)
|
|
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin, prepare_image_inputs
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.sam.image_processing_sam import _mask_to_rle_pytorch
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers.models.sam.image_processing_sam import _mask_to_rle_tf
|
|
|
|
|
|
@require_vision
|
|
@require_torchvision
|
|
class SamProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = SamProcessor
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SamImageProcessor()
|
|
processor = SamProcessor(image_processor)
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
|
|
|
def prepare_mask_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
mask_inputs = [np.random.randint(255, size=(30, 400), dtype=np.uint8)]
|
|
mask_inputs = [Image.fromarray(x) for x in mask_inputs]
|
|
return mask_inputs
|
|
|
|
def test_chat_template_save_loading(self):
|
|
self.skipTest("SamProcessor does not have a tokenizer")
|
|
|
|
def test_image_processor_defaults_preserved_by_image_kwargs(self):
|
|
self.skipTest("SamProcessor does not have a tokenizer")
|
|
|
|
def test_kwargs_overrides_default_image_processor_kwargs(self):
|
|
self.skipTest("SamProcessor does not have a tokenizer")
|
|
|
|
def test_kwargs_overrides_default_tokenizer_kwargs(self):
|
|
self.skipTest("SamProcessor does not have a tokenizer")
|
|
|
|
def test_tokenizer_defaults_preserved_by_kwargs(self):
|
|
self.skipTest("SamProcessor does not have a tokenizer")
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
processor = SamProcessor(image_processor=self.get_image_processor())
|
|
processor.save_pretrained(tmpdir)
|
|
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = SamProcessor.from_pretrained(tmpdir, do_normalize=False, padding_value=1.0)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, SamImageProcessor)
|
|
|
|
def test_image_processor_no_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = SamProcessor(image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
for image in input_feat_extract.pixel_values:
|
|
self.assertEqual(image.shape, (3, 1024, 1024))
|
|
|
|
for original_size in input_feat_extract.original_sizes:
|
|
np.testing.assert_array_equal(original_size, np.array([30, 400]))
|
|
|
|
for reshaped_input_size in input_feat_extract.reshaped_input_sizes:
|
|
np.testing.assert_array_equal(
|
|
reshaped_input_size, np.array([77, 1024])
|
|
) # reshaped_input_size value is before padding
|
|
|
|
def test_image_processor_with_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = SamProcessor(image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
mask_input = self.prepare_mask_inputs()
|
|
|
|
input_feat_extract = image_processor(images=image_input, segmentation_maps=mask_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, segmentation_maps=mask_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
for label in input_feat_extract.labels:
|
|
self.assertEqual(label.shape, (256, 256))
|
|
|
|
@require_torch
|
|
def test_post_process_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = SamProcessor(image_processor=image_processor)
|
|
dummy_masks = [torch.ones((1, 3, 5, 5))]
|
|
|
|
original_sizes = [[1764, 2646]]
|
|
|
|
reshaped_input_size = [[683, 1024]]
|
|
masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size)
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
masks = processor.post_process_masks(
|
|
dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size)
|
|
)
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
# should also work with np
|
|
dummy_masks = [np.ones((1, 3, 5, 5))]
|
|
masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
|
|
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
dummy_masks = [[1, 0], [0, 1]]
|
|
with self.assertRaises(ValueError):
|
|
masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
|
|
|
|
def test_rle_encoding(self):
|
|
"""
|
|
Test the run-length encoding function.
|
|
"""
|
|
# Test that a mask of all zeros returns a single run [height * width].
|
|
input_mask = torch.zeros((1, 2, 2), dtype=torch.long) # shape: 1 x 2 x 2
|
|
rle = _mask_to_rle_pytorch(input_mask)
|
|
|
|
self.assertEqual(len(rle), 1)
|
|
self.assertEqual(rle[0]["size"], [2, 2])
|
|
# For a 2x2 all-zero mask, we expect a single run of length 4:
|
|
self.assertEqual(rle[0]["counts"], [4])
|
|
|
|
# Test that a mask of all ones returns [0, height * width].
|
|
input_mask = torch.ones((1, 2, 2), dtype=torch.long) # shape: 1 x 2 x 2
|
|
rle = _mask_to_rle_pytorch(input_mask)
|
|
|
|
self.assertEqual(len(rle), 1)
|
|
self.assertEqual(rle[0]["size"], [2, 2])
|
|
# For a 2x2 all-one mask, we expect two runs: [0, 4].
|
|
self.assertEqual(rle[0]["counts"], [0, 4])
|
|
|
|
# Test a mask with mixed 0s and 1s to ensure the run-length encoding is correct.
|
|
# Example mask:
|
|
# Row 0: [0, 1]
|
|
# Row 1: [1, 1]
|
|
# This is shape (1, 2, 2).
|
|
# Flattened in Fortran order -> [0, 1, 1, 1].
|
|
# The RLE for [0,1,1,1] is [1, 3].
|
|
input_mask = torch.tensor([[[0, 1], [1, 1]]], dtype=torch.long)
|
|
rle = _mask_to_rle_pytorch(input_mask)
|
|
|
|
self.assertEqual(len(rle), 1)
|
|
self.assertEqual(rle[0]["size"], [2, 2])
|
|
self.assertEqual(rle[0]["counts"], [1, 3]) # 1 zero, followed by 3 ones
|
|
|
|
|
|
@require_vision
|
|
@require_tf
|
|
class TFSamProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SamImageProcessor()
|
|
processor = SamProcessor(image_processor)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
# This is to avoid repeating the skipping of the common tests
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images."""
|
|
return prepare_image_inputs()
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = SamProcessor(image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, SamImageProcessor)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = SamProcessor(image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
input_feat_extract.pop("original_sizes") # pop original_sizes as it is popped in the processor
|
|
input_feat_extract.pop("reshaped_input_sizes") # pop reshaped_input_sizes as it is popped in the processor
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
@require_tf
|
|
def test_post_process_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = SamProcessor(image_processor=image_processor)
|
|
dummy_masks = [tf.ones((1, 3, 5, 5))]
|
|
|
|
original_sizes = [[1764, 2646]]
|
|
|
|
reshaped_input_size = [[683, 1024]]
|
|
masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size, return_tensors="tf")
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
masks = processor.post_process_masks(
|
|
dummy_masks,
|
|
tf.convert_to_tensor(original_sizes),
|
|
tf.convert_to_tensor(reshaped_input_size),
|
|
return_tensors="tf",
|
|
)
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
# should also work with np
|
|
dummy_masks = [np.ones((1, 3, 5, 5))]
|
|
masks = processor.post_process_masks(
|
|
dummy_masks, np.array(original_sizes), np.array(reshaped_input_size), return_tensors="tf"
|
|
)
|
|
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
dummy_masks = [[1, 0], [0, 1]]
|
|
with self.assertRaises(tf.errors.InvalidArgumentError):
|
|
masks = processor.post_process_masks(
|
|
dummy_masks, np.array(original_sizes), np.array(reshaped_input_size), return_tensors="tf"
|
|
)
|
|
|
|
def test_rle_encoding(self):
|
|
"""
|
|
Test the run-length encoding function.
|
|
"""
|
|
# Test that a mask of all zeros returns a single run [height * width].
|
|
input_mask = tf.zeros((1, 2, 2), dtype=tf.int64) # shape: 1 x 2 x 2
|
|
rle = _mask_to_rle_tf(input_mask)
|
|
|
|
self.assertEqual(len(rle), 1)
|
|
self.assertEqual(rle[0]["size"], [2, 2])
|
|
# For a 2x2 all-zero mask, we expect a single run of length 4:
|
|
self.assertEqual(rle[0]["counts"], [4])
|
|
|
|
# Test that a mask of all ones returns [0, height * width].
|
|
input_mask = tf.ones((1, 2, 2), dtype=tf.int64) # shape: 1 x 2 x 2
|
|
rle = _mask_to_rle_tf(input_mask)
|
|
|
|
self.assertEqual(len(rle), 1)
|
|
self.assertEqual(rle[0]["size"], [2, 2])
|
|
# For a 2x2 all-one mask, we expect two runs: [0, 4].
|
|
self.assertEqual(rle[0]["counts"], [0, 4])
|
|
|
|
# Test a mask with mixed 0s and 1s to ensure the run-length encoding is correct.
|
|
# Example mask:
|
|
# Row 0: [0, 1]
|
|
# Row 1: [1, 1]
|
|
# This is shape (1, 2, 2).
|
|
# Flattened in Fortran order -> [0, 1, 1, 1].
|
|
# The RLE for [0,1,1,1] is [1, 3].
|
|
input_mask = tf.constant([[[0, 1], [1, 1]]], dtype=tf.int64)
|
|
rle = _mask_to_rle_tf(input_mask)
|
|
|
|
self.assertEqual(len(rle), 1)
|
|
self.assertEqual(rle[0]["size"], [2, 2])
|
|
self.assertEqual(rle[0]["counts"], [1, 3]) # 1 zero, followed by 3 ones
|
|
|
|
|
|
@require_vision
|
|
@require_torchvision
|
|
class SamProcessorEquivalenceTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SamImageProcessor()
|
|
processor = SamProcessor(image_processor)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
# This is to avoid repeating the skipping of the common tests
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images."""
|
|
return prepare_image_inputs()
|