transformers/tests/models/idefics/test_processor_idefics.py
Matt 4d0de5f73a
🚨 🚨 Setup -> setupclass conversion (#37282)
* More limited setup -> setupclass conversion

* make fixup

* Trigger tests

* Fixup UDOP

* Missed a spot

* tearDown -> tearDownClass where appropriate

* Couple more class fixes

* Fixups for UDOP and VisionTextDualEncoder

* Ignore errors when removing the tmpdir, in case it already got cleaned up somewhere

* CLIP fixes

* More correct classmethods

* Wav2Vec2Bert fixes

* More methods become static

* More class methods

* More class methods

* Revert changes for integration tests / modeling files

* Use a different tempdir for tests that actually write to it

* Remove addClassCleanup and just use teardownclass

* Remove changes in modeling files

* Cleanup get_processor_dict() for got_ocr2

* Fix regression on Wav2Vec2BERT test that was masked by this before

* Rework tests that modify the tmpdir

* make fix-copies

* revert clvp modeling test changes

* Fix CLIP processor test

* make fix-copies
2025-04-08 17:15:37 +01:00

358 lines
14 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import numpy as np
from transformers import (
AutoProcessor,
IdeficsImageProcessor,
IdeficsProcessor,
LlamaTokenizerFast,
PreTrainedTokenizerFast,
)
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
@require_torch
@require_vision
class IdeficsProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = IdeficsProcessor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
image_processor = IdeficsImageProcessor(return_tensors="pt")
tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics")
processor = IdeficsProcessor(image_processor, tokenizer)
processor.save_pretrained(cls.tmpdirname)
cls.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"]
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
def prepare_prompts(self):
"""This function prepares a list of PIL images"""
num_images = 2
images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)]
images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images]
# print([type(x) for x in images])
# die
prompts = [
# text and 1 image
[
"User:",
images[0],
"Describe this image.\nAssistant:",
],
# text and images
[
"User:",
images[0],
"Describe this image.\nAssistant: An image of two dogs.\n",
"User:",
images[1],
"Describe this image.\nAssistant:",
],
# only text
[
"User:",
"Describe this image.\nAssistant: An image of two kittens.\n",
"User:",
"Describe this image.\nAssistant:",
],
# only images
[
images[0],
images[1],
],
]
return prompts
def test_save_load_pretrained_additional_features(self):
with tempfile.TemporaryDirectory() as tmpdir:
processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(tmpdir)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = IdeficsProcessor.from_pretrained(
tmpdir, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, IdeficsImageProcessor)
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
prompts = self.prepare_prompts()
# test that all prompts succeeded
input_processor = processor(text=prompts, return_tensors="pt", padding="longest")
for key in self.input_keys:
assert torch.is_tensor(input_processor[key])
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor, return_tensors="pt")
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_tokenizer_padding(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer(padding_side="right")
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor, return_tensors="pt")
predicted_tokens = [
"<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk>",
"<s> Describe this image.\nAssistant:<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk>",
]
predicted_attention_masks = [
([1] * 10) + ([0] * 9),
([1] * 10) + ([0] * 10),
]
prompts = [[prompt] for prompt in self.prepare_prompts()[2]]
max_length = processor(text=prompts, padding="max_length", truncation=True, max_length=20, return_tensors="pt")
longest = processor(text=prompts, padding="longest", truncation=True, max_length=30, return_tensors="pt")
decoded_max_length = processor.tokenizer.decode(max_length["input_ids"][-1])
decoded_longest = processor.tokenizer.decode(longest["input_ids"][-1])
self.assertEqual(decoded_max_length, predicted_tokens[1])
self.assertEqual(decoded_longest, predicted_tokens[0])
self.assertListEqual(max_length["attention_mask"][-1].tolist(), predicted_attention_masks[1])
self.assertListEqual(longest["attention_mask"][-1].tolist(), predicted_attention_masks[0])
def test_tokenizer_left_padding(self):
"""Identical to test_tokenizer_padding, but with padding_side not explicitly set."""
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_tokens = [
"<unk><unk><unk><unk><unk><unk><unk><unk><unk><s> Describe this image.\nAssistant:",
"<unk><unk><unk><unk><unk><unk><unk><unk><unk><unk><s> Describe this image.\nAssistant:",
]
predicted_attention_masks = [
([0] * 9) + ([1] * 10),
([0] * 10) + ([1] * 10),
]
prompts = [[prompt] for prompt in self.prepare_prompts()[2]]
max_length = processor(text=prompts, padding="max_length", truncation=True, max_length=20)
longest = processor(text=prompts, padding="longest", truncation=True, max_length=30)
decoded_max_length = processor.tokenizer.decode(max_length["input_ids"][-1])
decoded_longest = processor.tokenizer.decode(longest["input_ids"][-1])
self.assertEqual(decoded_max_length, predicted_tokens[1])
self.assertEqual(decoded_longest, predicted_tokens[0])
self.assertListEqual(max_length["attention_mask"][-1].tolist(), predicted_attention_masks[1])
self.assertListEqual(longest["attention_mask"][-1].tolist(), predicted_attention_masks[0])
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
prompts = self.prepare_prompts()
inputs = processor(text=prompts, padding="longest", return_tensors="pt")
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertSetEqual(set(inputs.keys()), set(self.input_keys))
# Override the following tests as Idefics image processor does not accept do_rescale and rescale_factor
@require_torch
@require_vision
def test_image_processor_defaults_preserved_by_image_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor", image_size=234)
tokenizer = self.get_component("tokenizer", max_length=117)
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertEqual(len(inputs["pixel_values"][0][0][0]), 234)
@require_torch
@require_vision
def test_kwargs_overrides_default_image_processor_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor", image_size=234)
tokenizer = self.get_component("tokenizer", max_length=117)
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, image_size=224)
self.assertEqual(len(inputs["pixel_values"][0][0][0]), 224)
@require_torch
@require_vision
def test_unstructured_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
image_size=214,
padding="max_length",
max_length=76,
)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_unstructured_kwargs_batched(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs(batch_size=2)
image_input = self.prepare_image_inputs(batch_size=2)
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
image_size=214,
padding="longest",
max_length=76,
)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 8)
@require_torch
@require_vision
def test_structured_kwargs_nested(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"image_size": 214},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.skip_processor_without_typed_kwargs(processor)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_structured_kwargs_nested_from_dict(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs()
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"image_size": 214},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 76)