mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* More limited setup -> setupclass conversion * make fixup * Trigger tests * Fixup UDOP * Missed a spot * tearDown -> tearDownClass where appropriate * Couple more class fixes * Fixups for UDOP and VisionTextDualEncoder * Ignore errors when removing the tmpdir, in case it already got cleaned up somewhere * CLIP fixes * More correct classmethods * Wav2Vec2Bert fixes * More methods become static * More class methods * More class methods * Revert changes for integration tests / modeling files * Use a different tempdir for tests that actually write to it * Remove addClassCleanup and just use teardownclass * Remove changes in modeling files * Cleanup get_processor_dict() for got_ocr2 * Fix regression on Wav2Vec2BERT test that was masked by this before * Rework tests that modify the tmpdir * make fix-copies * revert clvp modeling test changes * Fix CLIP processor test * make fix-copies
250 lines
10 KiB
Python
250 lines
10 KiB
Python
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from transformers import GemmaTokenizer
|
|
from transformers.models.colpali.processing_colpali import ColPaliProcessor
|
|
from transformers.testing_utils import get_tests_dir, require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
from transformers.utils.dummy_vision_objects import SiglipImageProcessor
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import (
|
|
ColPaliProcessor,
|
|
PaliGemmaProcessor,
|
|
SiglipImageProcessor,
|
|
)
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
@require_vision
|
|
class ColPaliProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = ColPaliProcessor
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SiglipImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
|
|
image_processor.image_seq_length = 0
|
|
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_process_images(self):
|
|
# Processor configuration
|
|
image_input = self.prepare_image_inputs()
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=112, padding="max_length")
|
|
image_processor.image_seq_length = 14
|
|
|
|
# Get the processor
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer,
|
|
image_processor=image_processor,
|
|
)
|
|
|
|
# Process the image
|
|
batch_feature = processor.process_images(images=image_input, return_tensors="pt")
|
|
|
|
# Assertions
|
|
self.assertIn("pixel_values", batch_feature)
|
|
self.assertEqual(batch_feature["pixel_values"].shape, torch.Size([1, 3, 384, 384]))
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_process_queries(self):
|
|
# Inputs
|
|
queries = [
|
|
"Is attention really all you need?",
|
|
"Are Benjamin, Antoine, Merve, and Jo best friends?",
|
|
]
|
|
|
|
# Processor configuration
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=112, padding="max_length")
|
|
image_processor.image_seq_length = 14
|
|
|
|
# Get the processor
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer,
|
|
image_processor=image_processor,
|
|
)
|
|
|
|
# Process the image
|
|
batch_feature = processor.process_queries(text=queries, return_tensors="pt")
|
|
|
|
# Assertions
|
|
self.assertIn("input_ids", batch_feature)
|
|
self.assertIsInstance(batch_feature["input_ids"], torch.Tensor)
|
|
self.assertEqual(batch_feature["input_ids"].shape[0], len(queries))
|
|
|
|
# The following tests are overwritten as ColPaliProcessor can only take one of images or text as input at a time
|
|
|
|
def test_tokenizer_defaults_preserved_by_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = self.prepare_text_inputs()
|
|
inputs = processor(text=input_str, return_tensors="pt")
|
|
self.assertEqual(inputs[self.text_input_name].shape[-1], 117)
|
|
|
|
def test_image_processor_defaults_preserved_by_image_kwargs(self):
|
|
"""
|
|
We use do_rescale=True, rescale_factor=-1 to ensure that image_processor kwargs are preserved in the processor.
|
|
We then check that the mean of the pixel_values is less than or equal to 0 after processing.
|
|
Since the original pixel_values are in [0, 255], this is a good indicator that the rescale_factor is indeed applied.
|
|
"""
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor_components["image_processor"] = self.get_component(
|
|
"image_processor", do_rescale=True, rescale_factor=-1
|
|
)
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(images=image_input, return_tensors="pt")
|
|
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
|
|
|
|
def test_kwargs_overrides_default_tokenizer_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", padding="longest")
|
|
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = self.prepare_text_inputs()
|
|
inputs = processor(text=input_str, return_tensors="pt", max_length=112, padding="max_length")
|
|
self.assertEqual(inputs[self.text_input_name].shape[-1], 112)
|
|
|
|
def test_kwargs_overrides_default_image_processor_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor_components["image_processor"] = self.get_component(
|
|
"image_processor", do_rescale=True, rescale_factor=1
|
|
)
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(images=image_input, do_rescale=True, rescale_factor=-1, return_tensors="pt")
|
|
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
|
|
|
|
def test_unstructured_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = self.prepare_text_inputs()
|
|
inputs = processor(
|
|
text=input_str,
|
|
return_tensors="pt",
|
|
do_rescale=True,
|
|
rescale_factor=-1,
|
|
padding="max_length",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertEqual(inputs[self.text_input_name].shape[-1], 76)
|
|
|
|
def test_unstructured_kwargs_batched(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
image_input = self.prepare_image_inputs(batch_size=2)
|
|
inputs = processor(
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
do_rescale=True,
|
|
rescale_factor=-1,
|
|
padding="longest",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0)
|
|
|
|
def test_doubly_passed_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
with self.assertRaises(ValueError):
|
|
_ = processor(
|
|
images=image_input,
|
|
images_kwargs={"do_rescale": True, "rescale_factor": -1},
|
|
do_rescale=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
def test_structured_kwargs_nested(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = self.prepare_text_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"do_rescale": True, "rescale_factor": -1},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, **all_kwargs)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
self.assertEqual(inputs[self.text_input_name].shape[-1], 76)
|
|
|
|
def test_structured_kwargs_nested_from_dict(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
processor_components = self.prepare_components()
|
|
processor = self.processor_class(**processor_components)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"do_rescale": True, "rescale_factor": -1},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(images=image_input, **all_kwargs)
|
|
self.assertEqual(inputs[self.text_input_name].shape[-1], 76)
|