.. | ||
README.md |
language |
---|
ms |
Bahasa BERT Model
Pretrained BERT base language model for Malay and Indonesian.
Pretraining Corpus
bert-base-bahasa-cased
model was pretrained on ~1.8 Billion words. We trained on both standard and social media language structures, and below is list of data we trained on,
- dumping wikipedia.
- local instagram.
- local twitter.
- local news.
- local parliament text.
- local singlish/manglish text.
- IIUM Confession.
- Wattpad.
- Academia PDF.
Preprocessing steps can reproduce from here, Malaya/pretrained-model/preprocess.
Pretraining details
- This model was trained using Google BERT's github repository on 3 Titan V100 32GB VRAM.
- All steps can reproduce from here, Malaya/pretrained-model/bert.
Load Pretrained Model
You can use this model by installing torch
or tensorflow
and Huggingface library transformers
. And you can use it directly by initializing it like this:
from transformers import AlbertTokenizer, BertModel
model = BertModel.from_pretrained('huseinzol05/bert-base-bahasa-cased')
tokenizer = AlbertTokenizer.from_pretrained(
'huseinzol05/bert-base-bahasa-cased',
unk_token = '[UNK]',
pad_token = '[PAD]',
do_lower_case = False,
)
We use google/sentencepiece to train the tokenizer, so to use it, need to load from AlbertTokenizer
.
Example using AutoModelWithLMHead
from transformers import AlbertTokenizer, AutoModelWithLMHead, pipeline
model = AutoModelWithLMHead.from_pretrained('huseinzol05/bert-base-bahasa-cased')
tokenizer = AlbertTokenizer.from_pretrained(
'huseinzol05/bert-base-bahasa-cased',
unk_token = '[UNK]',
pad_token = '[PAD]',
do_lower_case = False,
)
fill_mask = pipeline('fill-mask', model = model, tokenizer = tokenizer)
print(fill_mask('makan ayam dengan [MASK]'))
Output is,
[{'sequence': '[CLS] makan ayam dengan rendang[SEP]',
'score': 0.10812027007341385,
'token': 2446},
{'sequence': '[CLS] makan ayam dengan kicap[SEP]',
'score': 0.07653367519378662,
'token': 12928},
{'sequence': '[CLS] makan ayam dengan nasi[SEP]',
'score': 0.06839974224567413,
'token': 450},
{'sequence': '[CLS] makan ayam dengan ayam[SEP]',
'score': 0.059544261544942856,
'token': 638},
{'sequence': '[CLS] makan ayam dengan sayur[SEP]',
'score': 0.05294966697692871,
'token': 1639}]
Results
For further details on the model performance, simply checkout accuracy page from Malaya, https://malaya.readthedocs.io/en/latest/Accuracy.html, we compared with traditional models.
Acknowledgement
Thanks to Im Big, LigBlou, Mesolitica and KeyReply for sponsoring AWS, Google and GPU clouds to train BERT for Bahasa.