transformers/tests/pipelines/test_pipelines_image_to_text.py
Pavel Iakubovskii 48461c0fe2
Make pipeline able to load processor (#32514)
* Refactor get_test_pipeline

* Fixup

* Fixing tests

* Add processor loading in tests

* Restructure processors loading

* Add processor to the pipeline

* Move model loading on tom of the test

* Update `get_test_pipeline`

* Fixup

* Add class-based flags for loading processors

* Change `is_pipeline_test_to_skip` signature

* Skip t5 failing test for slow tokenizer

* Fixup

* Fix copies for T5

* Fix typo

* Add try/except for tokenizer loading (kosmos-2 case)

* Fixup

* Llama not fails for long generation

* Revert processor pass in text-generation test

* Fix docs

* Switch back to json file for image processors and feature extractors

* Add processor type check

* Remove except for tokenizers

* Fix docstring

* Fix empty lists for tests

* Fixup

* Fix load check

* Ensure we have non-empty test cases

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/pipelines/base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Rework comment

* Better docs, add note about pipeline components

* Change warning to error raise

* Fixup

* Refine pipeline docs

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-10-09 16:46:11 +01:00

329 lines
12 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import requests
from huggingface_hub import ImageToTextOutput
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import ImageToTextPipeline, pipeline
from transformers.testing_utils import (
compare_pipeline_output_to_hub_spec,
is_pipeline_test,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
pipe = ImageToTextPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
torch_dtype=torch_dtype,
)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}],
],
)
@require_tf
def test_small_model_tf(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
outputs = pipe(image, max_new_tokens=1)
self.assertEqual(
outputs,
[{"generated_text": "growth"}],
)
for single_output in outputs:
compare_pipeline_output_to_hub_spec(single_output, ImageToTextOutput)
@require_torch
def test_small_model_pt(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
@require_torch
def test_small_model_pt_conditional(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe(image, prompt=prompt)
self.assertTrue(outputs[0]["generated_text"].startswith(prompt))
@require_torch
def test_consistent_batching_behaviour(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe([image, image], prompt=prompt)
self.assertTrue(outputs[0][0]["generated_text"].startswith(prompt))
self.assertTrue(outputs[1][0]["generated_text"].startswith(prompt))
outputs = pipe([image, image], prompt=prompt, batch_size=2)
self.assertTrue(outputs[0][0]["generated_text"].startswith(prompt))
self.assertTrue(outputs[1][0]["generated_text"].startswith(prompt))
from torch.utils.data import Dataset
class MyDataset(Dataset):
def __len__(self):
return 5
def __getitem__(self, i):
return "./tests/fixtures/tests_samples/COCO/000000039769.png"
dataset = MyDataset()
for batch_size in (1, 2, 4):
outputs = pipe(dataset, prompt=prompt, batch_size=batch_size if batch_size > 1 else None)
self.assertTrue(list(outputs)[0][0]["generated_text"].startswith(prompt))
self.assertTrue(list(outputs)[1][0]["generated_text"].startswith(prompt))
@slow
@require_torch
def test_large_model_pt(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])
@slow
@require_torch
def test_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])
@slow
@require_torch
def test_conditional_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "a photography of"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "a photo of a"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_pix2struct(self):
pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "ash cloud"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_tf
def test_large_model_tf(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_conditional_generation_llava(self):
pipe = pipeline("image-to-text", model="llava-hf/bakLlava-v1-hf")
prompt = (
"<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT:"
)
outputs = pipe(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg",
prompt=prompt,
generate_kwargs={"max_new_tokens": 200},
)
self.assertEqual(
outputs,
[
{
"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT: Lava"
}
],
)
@slow
@require_torch
def test_nougat(self):
pipe = pipeline("image-to-text", "facebook/nougat-base")
outputs = pipe("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/nougat_paper.png")
self.assertEqual(
outputs,
[{"generated_text": "# Nougat: Neural Optical Understanding for Academic Documents\n\n Lukas Blec"}],
)