transformers/tests/pipelines/test_pipelines_image_classification.py
Pavel Iakubovskii 48461c0fe2
Make pipeline able to load processor (#32514)
* Refactor get_test_pipeline

* Fixup

* Fixing tests

* Add processor loading in tests

* Restructure processors loading

* Add processor to the pipeline

* Move model loading on tom of the test

* Update `get_test_pipeline`

* Fixup

* Add class-based flags for loading processors

* Change `is_pipeline_test_to_skip` signature

* Skip t5 failing test for slow tokenizer

* Fixup

* Fix copies for T5

* Fix typo

* Add try/except for tokenizer loading (kosmos-2 case)

* Fixup

* Llama not fails for long generation

* Revert processor pass in text-generation test

* Fix docs

* Switch back to json file for image processors and feature extractors

* Add processor type check

* Remove except for tokenizers

* Fix docstring

* Fix empty lists for tests

* Fixup

* Fix load check

* Ensure we have non-empty test cases

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/pipelines/base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Rework comment

* Better docs, add note about pipeline components

* Change warning to error raise

* Fixup

* Refine pipeline docs

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-10-09 16:46:11 +01:00

321 lines
12 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from huggingface_hub import ImageClassificationOutputElement
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
PreTrainedTokenizerBase,
is_torch_available,
is_vision_available,
)
from transformers.pipelines import ImageClassificationPipeline, pipeline
from transformers.testing_utils import (
compare_pipeline_output_to_hub_spec,
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_torch_or_tf
@require_vision
class ImageClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
image_classifier = ImageClassificationPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
torch_dtype=torch_dtype,
top_k=2,
)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
return image_classifier, examples
def run_pipeline_test(self, image_classifier, examples):
outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")
self.assertEqual(
outputs,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
import datasets
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
# Accepts URL + PIL.Image + lists
outputs = image_classifier(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["image"],
# LA
dataset[1]["image"],
# L
dataset[2]["image"],
]
)
self.assertEqual(
outputs,
[
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
],
)
for single_output in outputs:
for output_element in single_output:
compare_pipeline_output_to_hub_spec(output_element, ImageClassificationOutputElement)
@require_torch
def test_small_model_pt(self):
small_model = "hf-internal-testing/tiny-random-vit"
image_classifier = pipeline("image-classification", model=small_model)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)
outputs = image_classifier(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
top_k=2,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
],
)
@require_tf
def test_small_model_tf(self):
small_model = "hf-internal-testing/tiny-random-vit"
image_classifier = pipeline("image-classification", model=small_model, framework="tf")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)
outputs = image_classifier(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
top_k=2,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
],
)
def test_custom_tokenizer(self):
tokenizer = PreTrainedTokenizerBase()
# Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
image_classifier = pipeline(
"image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer
)
self.assertIs(image_classifier.tokenizer, tokenizer)
@require_torch
def test_torch_float16_pipeline(self):
image_classifier = pipeline(
"image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.float16
)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=3),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)
@require_torch
def test_torch_bfloat16_pipeline(self):
image_classifier = pipeline(
"image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.bfloat16
)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=3),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)
@slow
@require_torch
def test_perceiver(self):
# Perceiver is not tested by `run_pipeline_test` properly.
# That is because the type of feature_extractor and model preprocessor need to be kept
# in sync, which is not the case in the current design
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.4385, "label": "tabby, tabby cat"},
{"score": 0.321, "label": "tiger cat"},
{"score": 0.0502, "label": "Egyptian cat"},
{"score": 0.0137, "label": "crib, cot"},
{"score": 0.007, "label": "radiator"},
],
)
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.5658, "label": "tabby, tabby cat"},
{"score": 0.1309, "label": "tiger cat"},
{"score": 0.0722, "label": "Egyptian cat"},
{"score": 0.0707, "label": "remote control, remote"},
{"score": 0.0082, "label": "computer keyboard, keypad"},
],
)
image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned")
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.3022, "label": "tabby, tabby cat"},
{"score": 0.2362, "label": "Egyptian cat"},
{"score": 0.1856, "label": "tiger cat"},
{"score": 0.0324, "label": "remote control, remote"},
{"score": 0.0096, "label": "quilt, comforter, comfort, puff"},
],
)
@slow
@require_torch
def test_multilabel_classification(self):
small_model = "hf-internal-testing/tiny-random-vit"
# Sigmoid is applied for multi-label classification
image_classifier = pipeline("image-classification", model=small_model)
image_classifier.model.config.problem_type = "multi_label_classification"
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
)
outputs = image_classifier(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
],
)
@slow
@require_torch
def test_function_to_apply(self):
small_model = "hf-internal-testing/tiny-random-vit"
# Sigmoid is applied for multi-label classification
image_classifier = pipeline("image-classification", model=small_model)
outputs = image_classifier(
"http://images.cocodataset.org/val2017/000000039769.jpg",
function_to_apply="sigmoid",
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"label": "LABEL_1", "score": 0.5356}, {"label": "LABEL_0", "score": 0.4612}],
)