transformers/tests/pipelines/test_pipelines_audio_classification.py
Pavel Iakubovskii 48461c0fe2
Make pipeline able to load processor (#32514)
* Refactor get_test_pipeline

* Fixup

* Fixing tests

* Add processor loading in tests

* Restructure processors loading

* Add processor to the pipeline

* Move model loading on tom of the test

* Update `get_test_pipeline`

* Fixup

* Add class-based flags for loading processors

* Change `is_pipeline_test_to_skip` signature

* Skip t5 failing test for slow tokenizer

* Fixup

* Fix copies for T5

* Fix typo

* Add try/except for tokenizer loading (kosmos-2 case)

* Fixup

* Llama not fails for long generation

* Revert processor pass in text-generation test

* Fix docs

* Switch back to json file for image processors and feature extractors

* Add processor type check

* Remove except for tokenizers

* Fix docstring

* Fix empty lists for tests

* Fixup

* Fix load check

* Ensure we have non-empty test cases

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/pipelines/base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Rework comment

* Better docs, add note about pipeline components

* Change warning to error raise

* Fixup

* Refine pipeline docs

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-10-09 16:46:11 +01:00

156 lines
5.2 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from huggingface_hub import AudioClassificationOutputElement
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
compare_pipeline_output_to_hub_spec,
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class AudioClassificationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
audio_classifier = AudioClassificationPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
torch_dtype=torch_dtype,
)
# test with a raw waveform
audio = np.zeros((34000,))
audio2 = np.zeros((14000,))
return audio_classifier, [audio2, audio]
def run_pipeline_test(self, audio_classifier, examples):
audio2, audio = examples
output = audio_classifier(audio)
# by default a model is initialized with num_labels=2
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
output = audio_classifier(audio, top_k=1)
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
],
)
self.run_torchaudio(audio_classifier)
for single_output in output:
compare_pipeline_output_to_hub_spec(single_output, AudioClassificationOutputElement)
@require_torchaudio
def run_torchaudio(self, audio_classifier):
import datasets
# test with a local file
dataset = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio = dataset[0]["audio"]["array"]
output = audio_classifier(audio)
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
@require_torch
def test_small_model_pt(self):
model = "anton-l/wav2vec2-random-tiny-classifier"
audio_classifier = pipeline("audio-classification", model=model)
audio = np.ones((8000,))
output = audio_classifier(audio, top_k=4)
EXPECTED_OUTPUT = [
{"score": 0.0842, "label": "no"},
{"score": 0.0838, "label": "up"},
{"score": 0.0837, "label": "go"},
{"score": 0.0834, "label": "right"},
]
EXPECTED_OUTPUT_PT_2 = [
{"score": 0.0845, "label": "stop"},
{"score": 0.0844, "label": "on"},
{"score": 0.0841, "label": "right"},
{"score": 0.0834, "label": "left"},
]
self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])
audio_dict = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate}
output = audio_classifier(audio_dict, top_k=4)
self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])
@require_torch
@slow
def test_large_model_pt(self):
import datasets
model = "superb/wav2vec2-base-superb-ks"
audio_classifier = pipeline("audio-classification", model=model)
dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test", trust_remote_code=True)
audio = np.array(dataset[3]["speech"], dtype=np.float32)
output = audio_classifier(audio, top_k=4)
self.assertEqual(
nested_simplify(output, decimals=3),
[
{"score": 0.981, "label": "go"},
{"score": 0.007, "label": "up"},
{"score": 0.006, "label": "_unknown_"},
{"score": 0.001, "label": "down"},
],
)
@require_tf
@unittest.skip(reason="Audio classification is not implemented for TF")
def test_small_model_tf(self):
pass