transformers/tests/models/shieldgemma2/test_processing_shieldgemma2.py
Raushan Turganbay 1ae8d54b04
[chat-template] Unify tests and clean up 🧼 (#37275)
* fix tests and some clean up

* make one general test for each modality

* remove redundant merging of kwargs

* edge cases

* dont enforce slow when reloading

* fix gemma3 tests

* has to adapt llama 4 after rebase

* remove also from overriden tests

* should be green now
2025-04-10 14:42:32 +02:00

209 lines
8.6 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from collections.abc import Mapping
from parameterized import parameterized
from transformers import GemmaTokenizer, ShieldGemma2Processor
from transformers.testing_utils import get_tests_dir, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import Gemma3ImageProcessor
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
# Copied from _CHAT_TEMPLATE in src/transformers/models/shieldgemma2/convert_shieldgemma2_weights_orbax_to_hf.py
_CHAT_TEMPLATE = """{{ bos_token }}
{%- for message in messages -%}
{%- if message['content'] is iterable -%}
{%- for item in message['content'] -%}
{{ '<start_of_turn>user\n' }}
{%- if item['type'] == 'image' -%}
{{ '<start_of_image>' }}
{%- elif item['type'] == 'text' -%}
{{ 'You are a policy expert trying to help determine whether a generated or real image is in' }}
{{ ' violation of the safety policy below. Your decision must very clearly follow the specific'}}
{{ ' language used in the safety policy and should not include any interpretation outside of the' }}
{{ ' safety policy.\n\n' }}
{{ '<BEGIN_SAFETY_POLICY>\n' }}
{{ item['text'] + '\n' }}
{{ '</END_SAFETY_POLICY>\n\n' }}
{{ 'Does the image violate the above policy? Your Answer must start with \\'Yes\\' or \\'No\\'.' }}
{{ '<end_of_turn>\n' }}
{%- endif -%}
{%- endfor -%}
{{'<start_of_turn>model\n'}}
{%- else -%}
{{ raise_exception("Conversation messages must contain iterable content containing images and policy definitions in text.") }}
{%- endif -%}
{%- endfor -%}
"""
# Simplified from _SHIELDGEMMA2_POLICIES in src/transformers/models/shieldgemma2/convert_shieldgemma2_weights_orbax_to_hf.py
_SHIELDGEMMA2_POLICIES: Mapping[str, str] = {
"dangerous": "Test policy related to dangerous content.",
"sexual": "Test policy related to sexually explicit content.",
"violence": "Test policy related to violent content.",
}
@require_vision
class ShieldGemma2ProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = ShieldGemma2Processor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
image_processor = Gemma3ImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
extra_special_tokens = {
"image_token": "<image_soft_token>",
"boi_token": "<start_of_image>",
"eoi_token": "<end_of_image>",
}
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True, extra_special_tokens=extra_special_tokens)
processor_kwargs = cls.prepare_processor_dict()
processor = ShieldGemma2Processor(image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs)
processor.save_pretrained(cls.tmpdirname)
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
@classmethod
def prepare_processor_dict(cls):
return {
"chat_template": _CHAT_TEMPLATE,
"policy_definitions": _SHIELDGEMMA2_POLICIES,
}
def test_policy_definitions_saved_in_config(self):
processor_config_path = os.path.join(self.tmpdirname, "processor_config.json")
with open(processor_config_path, "rb") as processor_config_file:
json_dict = json.load(processor_config_file)
self.assertIsInstance(json_dict, dict)
self.assertIn("policy_definitions", json_dict)
self.assertIs(len(json_dict["policy_definitions"]), 3)
@parameterized.expand(
[
("all_policies", None, 3),
("selected_policies", ["dangerous", "violence"], 2),
("single_policy", ["sexual"], 1),
]
)
def test_with_default_policies(self, name, policies, expected_batch_size):
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
images = self.prepare_image_inputs()
processed_inputs = processor(images=images, policies=policies)
self.assertEqual(len(processed_inputs[self.text_input_name]), expected_batch_size)
self.assertEqual(len(processed_inputs[self.images_input_name]), expected_batch_size)
@parameterized.expand(
[
("all_policies", None, 6),
("selected_policies_from_both", ["cbrne", "dangerous", "specialized_advice", "violence"], 4),
("selected_policies_from_custom", ["cbrne", "specialized_advice"], 2),
("selected_policies_from_default", ["dangerous", "violence"], 2),
("single_policy_from_custom", ["ip"], 1),
("single_policy_from_default", ["sexual"], 1),
]
)
def test_with_custom_policies(self, name, policies, expected_batch_size):
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
# Test policies adapted from https://ailuminate.mlcommons.org/benchmarks/ hazard categories
custom_policies = {
"cbrne": "Test policy related to indiscriminate weapons.",
"ip": "Test policy related to intellectual property.",
"specialized_advice": "Test policy related to specialized advice.",
}
images = self.prepare_image_inputs()
processed_inputs = processor(images=images, custom_policies=custom_policies, policies=policies)
self.assertEqual(len(processed_inputs[self.text_input_name]), expected_batch_size)
self.assertEqual(len(processed_inputs[self.images_input_name]), expected_batch_size)
def test_with_multiple_images(self):
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
images = self.prepare_image_inputs(batch_size=2)
processed_inputs = processor(images=images)
self.assertEqual(len(processed_inputs[self.text_input_name]), 6)
self.assertEqual(len(processed_inputs[self.images_input_name]), 6)
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@parameterized.expand([(1, "np"), (1, "pt"), (2, "np"), (2, "pt")])
@unittest.skip("ShieldGemma 2 chat template requires different message structure from parent.")
def test_apply_chat_template_image(self, batch_size: int, return_tensors: str):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_unstructured_kwargs_batched(self):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_unstructured_kwargs(self):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_tokenizer_defaults_preserved_by_kwargs(self):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_structured_kwargs_nested_from_dict(self):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_structured_kwargs_nested(self):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_kwargs_overrides_default_tokenizer_kwargs(self):
pass
# TODO(ryanmullins): Adapt this test for ShieldGemma 2
@unittest.skip("Parent test needs to be adapted for ShieldGemma 2.")
def test_kwargs_overrides_default_image_processor_kwargs(self):
pass