mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* use device agnostic APIs in test cases Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> * add one more Signed-off-by: YAO Matrix <matrix.yao@intel.com> * xpu now supports integer device id, aligning to CUDA behaviors Signed-off-by: Matrix Yao <matrix.yao@intel.com> * update to use device_properties Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> * update comment Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix comments Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> --------- Signed-off-by: Matrix Yao <matrix.yao@intel.com> Signed-off-by: YAO Matrix <matrix.yao@intel.com> Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
100 lines
3.3 KiB
Python
100 lines
3.3 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Helium model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, HeliumConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_read_token,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ..gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
HeliumForCausalLM,
|
|
HeliumForSequenceClassification,
|
|
HeliumForTokenClassification,
|
|
HeliumModel,
|
|
)
|
|
|
|
|
|
class HeliumModelTester(GemmaModelTester):
|
|
if is_torch_available():
|
|
config_class = HeliumConfig
|
|
model_class = HeliumModel
|
|
for_causal_lm_class = HeliumForCausalLM
|
|
for_sequence_class = HeliumForSequenceClassification
|
|
for_token_class = HeliumForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class HeliumModelTest(GemmaModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(HeliumModel, HeliumForCausalLM, HeliumForSequenceClassification, HeliumForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": HeliumModel,
|
|
"text-classification": HeliumForSequenceClassification,
|
|
"token-classification": HeliumForTokenClassification,
|
|
"text-generation": HeliumForCausalLM,
|
|
"zero-shot": HeliumForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
_is_stateful = True
|
|
model_split_percents = [0.5, 0.6]
|
|
|
|
def setUp(self):
|
|
self.model_tester = HeliumModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=HeliumConfig, hidden_size=37)
|
|
|
|
|
|
@slow
|
|
# @require_torch_gpu
|
|
class HeliumIntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello, today is a great day to"]
|
|
|
|
@require_read_token
|
|
def test_model_2b(self):
|
|
model_id = "kyutai/helium-1-preview"
|
|
EXPECTED_TEXTS = [
|
|
"Hello, today is a great day to start a new project. I have been working on a new project for a while now and I have"
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision="refs/pr/1"
|
|
).to(torch_device)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision="refs/pr/1")
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|