transformers/tests/test_tokenization_byt5.py
Patrick von Platen 47a98fc4cb
ByT5 model (#11971)
* allow tf to use uneven num of layers

* add tokenizer

* finish docs

* finish docs

* Apply suggestions from code review

* include in index

* finish

* Update docs/source/model_doc/byt5.rst

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* apply sylvais suggestions

* make style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-06-01 19:07:37 +01:00

179 lines
7.6 KiB
Python

# coding=utf-8
# Copyright 2020 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, ByT5Tokenizer
from transformers.file_utils import cached_property, is_tf_available, is_torch_available
from .test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
FRAMEWORK = "pt"
elif is_tf_available():
FRAMEWORK = "tf"
else:
FRAMEWORK = "jax"
class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = ByT5Tokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
tokenizer = ByT5Tokenizer()
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def t5_base_tokenizer(self):
return ByT5Tokenizer.from_pretrained("google/byt5-small")
def get_tokenizer(self, **kwargs) -> ByT5Tokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def test_eos_treatment(self):
tokenizer = self.t5_base_tokenizer
batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])
def test_prepare_batch_integration(self):
tokenizer = self.t5_base_tokenizer
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
self.assertIsInstance(batch, BatchEncoding)
if FRAMEWORK != "jax":
result = list(batch.input_ids.numpy()[0])
else:
result = list(batch.input_ids.tolist()[0])
self.assertListEqual(expected_src_tokens, result)
self.assertEqual((2, 37), batch.input_ids.shape)
self.assertEqual((2, 37), batch.attention_mask.shape)
def test_empty_target_text(self):
tokenizer = self.t5_base_tokenizer
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", batch)
self.assertIn("attention_mask", batch)
self.assertNotIn("decoder_input_ids", batch)
self.assertNotIn("decoder_attention_mask", batch)
def test_max_length_integration(self):
tokenizer = self.t5_base_tokenizer
tgt_text = [
"Summary of the text.",
"Another summary.",
]
with tokenizer.as_target_tokenizer():
targets = tokenizer(
tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
)
self.assertEqual(32, targets["input_ids"].shape[1])
def test_eos_in_input(self):
tokenizer = self.t5_base_tokenizer
src_text = ["A long paragraph for summarization. </s>"]
tgt_text = ["Summary of the text. </s>"]
# fmt: off
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
batch = tokenizer(src_text)
with tokenizer.as_target_tokenizer():
targets = tokenizer(tgt_text)
self.assertEqual(expected_src_tokens, batch["input_ids"][0])
self.assertEqual(expected_tgt_tokens, targets["input_ids"][0])
# cannot use default save_and_load_tokenzier test method because tokenzier has no vocab
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
tmpdirname = tempfile.mkdtemp()
sample_text = " He is very happy, UNwant\u00E9d,running"
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
self.assertListEqual(before_tokens, after_tokens)
shutil.rmtree(tmpdirname)
tokenizers = self.get_tokenizers(model_max_length=42)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
tmpdirname = tempfile.mkdtemp()
sample_text = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"])
additional_special_tokens = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token")
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
self.assertListEqual(before_tokens, after_tokens)
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
self.assertEqual(after_tokenizer.model_max_length, 42)
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
self.assertEqual(tokenizer.model_max_length, 43)
shutil.rmtree(tmpdirname)
# tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list
def test_pretrained_model_lists(self):
pass
# tokenizer does not have vocabulary
def test_get_vocab(self):
pass
# inputs cannot be pretokenized since ids depend on whole input string and not just on single characters
def test_pretokenized_inputs(self):
pass
# tests all ids in vocab => vocab doesn't exist so unnecessary to test
def test_conversion_reversible(self):
pass