mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-17 19:48:23 +06:00

* feature for tokenizer without slow/legacy version * format * modify common test * add tests * add PreTrainedTokenizerFast to AutoTokenizer * format * change tokenizer common test in order to be able to run test without a slow version * update tokenizer fast test in order to use `rust_tokenizer_class` attribute instead of `tokenizer_class` * add autokenizer test * replace `if self.tokenizer_class is not None` with ` if self.tokenizer_class is None` * remove obsolete change in comment * Update src/transformers/tokenization_utils_base.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/tokenization_utils_fast.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * change `get_main_tokenizer` into `get_tokenizers` * clarify `get_tokenizers` method * homogenize with `test_slow_tokenizer` and `test_rust_tokenizer` * add `test_rust_tokenizer = False` to tokenizer which don't define a fast version * `test_rust_tokenizer = False` for BertJapaneseTokenizer * `test_rust_tokenizer = False` for BertJapaneseCharacterTokenizationTest Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
132 lines
5.8 KiB
Python
132 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import (
|
|
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
AutoTokenizer,
|
|
BertTokenizer,
|
|
BertTokenizerFast,
|
|
GPT2Tokenizer,
|
|
GPT2TokenizerFast,
|
|
PreTrainedTokenizerFast,
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
)
|
|
from transformers.models.auto.configuration_auto import AutoConfig
|
|
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING
|
|
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
|
from transformers.testing_utils import (
|
|
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
|
|
DUMMY_UNKWOWN_IDENTIFIER,
|
|
SMALL_MODEL_IDENTIFIER,
|
|
require_tokenizers,
|
|
slow,
|
|
)
|
|
|
|
|
|
class AutoTokenizerTest(unittest.TestCase):
|
|
@slow
|
|
def test_tokenizer_from_pretrained(self):
|
|
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
def test_tokenizer_from_pretrained_identifier(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
def test_tokenizer_from_model_type(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 20)
|
|
|
|
def test_tokenizer_from_tokenizer_class(self):
|
|
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
|
|
self.assertIsInstance(config, RobertaConfig)
|
|
# Check that tokenizer_type ≠ model_type
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_with_correct_config(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
|
|
if isinstance(tokenizer, BertTokenizer):
|
|
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
|
|
else:
|
|
self.assertEqual(tokenizer.do_lower_case, False)
|
|
|
|
self.assertEqual(tokenizer.model_max_length, 512)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_non_existent(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
with self.assertRaises(EnvironmentError):
|
|
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
|
|
|
|
def test_parents_and_children_in_mappings(self):
|
|
# Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
|
|
# by the parents and will return the wrong configuration type when using auto models
|
|
|
|
mappings = (TOKENIZER_MAPPING,)
|
|
|
|
for mapping in mappings:
|
|
mapping = tuple(mapping.items())
|
|
for index, (child_config, _) in enumerate(mapping[1:]):
|
|
for parent_config, _ in mapping[: index + 1]:
|
|
with self.subTest(msg=f"Testing if {child_config.__name__} is child of {parent_config.__name__}"):
|
|
self.assertFalse(issubclass(child_config, parent_config))
|
|
|
|
@require_tokenizers
|
|
def test_from_pretrained_use_fast_toggle(self):
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer)
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)
|
|
|
|
@require_tokenizers
|
|
def test_do_lower_case(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", do_lower_case=False)
|
|
sample = "Hello, world. How are you?"
|
|
tokens = tokenizer.tokenize(sample)
|
|
self.assertEqual("[UNK]", tokens[0])
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False)
|
|
tokens = tokenizer.tokenize(sample)
|
|
self.assertEqual("[UNK]", tokens[0])
|
|
|
|
@require_tokenizers
|
|
def test_PreTrainedTokenizerFast_from_pretrained(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config")
|
|
self.assertEqual(type(tokenizer), PreTrainedTokenizerFast)
|
|
self.assertEqual(tokenizer.model_max_length, 512)
|
|
self.assertEqual(tokenizer.vocab_size, 30000)
|
|
self.assertEqual(tokenizer.unk_token, "[UNK]")
|
|
self.assertEqual(tokenizer.padding_side, "right")
|