mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 06:10:04 +06:00

* initial commit * keys match * update, fix conversion * fixes, inference working * fix * more fixes * more fixes * clean up * more clean up * fix copies and add convext copied layer norm * stash * pretty big upfate * cleaning * more cleaning * fixup stuffs * fix copies * fix iinit * update test removing tokenizer * nits * add pretrained * more nits * remove tracking of pipeline * few fixes * update san and conversion script * fix mask decoder and prompt encoder conversion * fixes * small update * fix order * fix * fix image embeddings * nites * few fixes * fix logits * clean up * fixes boxes inference * v1 AMG * clean up * some clean up * multi points support * amg working * fixup * clean up * readme * update toctree * fix type hint * multiple fixes * fixup * fixes * updates * updates * more tests * few fixes * change to `SamForMaskGeneration` * doc * fixup * fix more tests * multiple fixes * fix CI tests * refactor processor * renamings * draft the pipeline * refactor * fix tests * fix test * few cleanings * fix test * edit pipelien support chunking * udate * add slow tests * fix nit * fixup * fix nit * current chunk pipleine * cast boxes in fp32 * nit * current updates * piepleine works * fixup * clean up config * fix slow tests * fix slow tests * clean up * update doc and pipeline * adds more slow tests * fix slow tests * cleaning * tests pass * add docstring * fix copies * clean up * support batch of images * style * dummy is needed, add tests * fix slow tests * fix CI * update * adds more tests * fixes * fixes * fixup * fixes * few fixes * filter * few fixes * some refactor * touches finales * fix * style * remove pipeline files * fixes nits * revert pipeline changes * fix test * fixup * remove automodel for automatic mask generation * fix failing torch tests * update mdx * revert removal of `MODEL_FOR_AUTOMATIC_MASK_GENERATION_MAPPING` * update sam config based on review Co-authored-by: amyeroberts <aeroberts4444@gmail.com> Co-authored-by: sgugger <sylvain.gugger@gmail.com> * update low_resolution_masks -> pred_masks inti ln with layer_norm_eps add_decomposed_rel_pos doc forward doc of SamForMaskGeneration * update processor docstring * remove image processor import empty * update for testing * output vision hidden states + clean recomm also test all iou values * fixup * fixup * remove unused * Update src/transformers/models/sam/modeling_sam.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/models/sam/image_processing_sam.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * nits * fix * fix CI tests and slow tests * replace with Amy's processor * clearer docstring * add `SamVisionNeck` * refactor - all CI tests should pass * fix broken import on Gcolab * few fixes here and there * fix another bug * fix more bugs * update and merge * correct ckpt * address comments * add tips * revert * fix docstring * replace with `SamModel` * make fixup * add support for bathed images and batch ed points * make fixup this time, really * make fixup again and again * few fixes here and there, this should be the touche finale * Update docs/source/en/model_doc/sam.mdx * fixup * correct checkpoints * correct name * rm unneeded file * add notebook --------- Co-authored-by: younesbelkada <younesbelkada@gmail.com> Co-authored-by: amyeroberts <aeroberts4444@gmail.com> Co-authored-by: sgugger <sylvain.gugger@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
82 lines
3.1 KiB
Python
82 lines
3.1 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torchvision, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
|
|
|
|
|
|
@require_vision
|
|
@require_torchvision
|
|
class SamProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SamImageProcessor()
|
|
processor = SamProcessor(image_processor)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = SamProcessor(image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, SamImageProcessor)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = SamProcessor(image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
input_feat_extract.pop("original_sizes") # pop original_sizes as it is popped in the processor
|
|
input_feat_extract.pop("reshaped_input_sizes") # pop original_sizes as it is popped in the processor
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|