mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 18:48:24 +06:00
437 lines
19 KiB
Python
437 lines
19 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tokenization classes."""
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import collections
|
|
import logging
|
|
import os
|
|
import unicodedata
|
|
from io import open
|
|
|
|
from .tokenization_utils import PreTrainedTokenizer, clean_up_tokenization
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
'vocab_file':
|
|
{
|
|
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
|
|
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
|
|
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
|
|
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
|
|
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
|
|
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
|
|
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
|
|
'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
|
|
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
|
|
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
|
|
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
|
|
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
|
|
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
|
|
}
|
|
}
|
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
'bert-base-uncased': 512,
|
|
'bert-large-uncased': 512,
|
|
'bert-base-cased': 512,
|
|
'bert-large-cased': 512,
|
|
'bert-base-multilingual-uncased': 512,
|
|
'bert-base-multilingual-cased': 512,
|
|
'bert-base-chinese': 512,
|
|
'bert-base-german-cased': 512,
|
|
'bert-large-uncased-whole-word-masking': 512,
|
|
'bert-large-cased-whole-word-masking': 512,
|
|
'bert-large-uncased-whole-word-masking-finetuned-squad': 512,
|
|
'bert-large-cased-whole-word-masking-finetuned-squad': 512,
|
|
'bert-base-cased-finetuned-mrpc': 512,
|
|
}
|
|
|
|
def load_vocab(vocab_file):
|
|
"""Loads a vocabulary file into a dictionary."""
|
|
vocab = collections.OrderedDict()
|
|
with open(vocab_file, "r", encoding="utf-8") as reader:
|
|
tokens = reader.readlines()
|
|
for index, token in enumerate(tokens):
|
|
token = token.rstrip('\n')
|
|
vocab[token] = index
|
|
return vocab
|
|
|
|
|
|
def whitespace_tokenize(text):
|
|
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
|
text = text.strip()
|
|
if not text:
|
|
return []
|
|
tokens = text.split()
|
|
return tokens
|
|
|
|
|
|
class BertTokenizer(PreTrainedTokenizer):
|
|
r"""
|
|
Constructs a BertTokenizer.
|
|
:class:`~pytorch_pretrained_bert.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
|
|
|
|
Args:
|
|
vocab_file: Path to a one-wordpiece-per-line vocabulary file
|
|
do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False
|
|
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
|
|
max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the
|
|
minimum of this value (if specified) and the underlying BERT model's sequence length.
|
|
never_split: List of tokens which will never be split during tokenization. Only has an effect when
|
|
do_wordpiece_only=False
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
|
|
def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None,
|
|
unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]",
|
|
mask_token="[MASK]", tokenize_chinese_chars=True, **kwargs):
|
|
"""Constructs a BertTokenizer.
|
|
|
|
Args:
|
|
**vocab_file**: Path to a one-wordpiece-per-line vocabulary file
|
|
**do_lower_case**: (`optional`) boolean (default True)
|
|
Whether to lower case the input
|
|
Only has an effect when do_basic_tokenize=True
|
|
**do_basic_tokenize**: (`optional`) boolean (default True)
|
|
Whether to do basic tokenization before wordpiece.
|
|
**never_split**: (`optional`) list of string
|
|
List of tokens which will never be split during tokenization.
|
|
Only has an effect when do_basic_tokenize=True
|
|
**tokenize_chinese_chars**: (`optional`) boolean (default True)
|
|
Whether to tokenize Chinese characters.
|
|
This should likely be desactivated for Japanese:
|
|
see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
|
|
"""
|
|
super(BertTokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token,
|
|
pad_token=pad_token, cls_token=cls_token,
|
|
mask_token=mask_token, **kwargs)
|
|
if not os.path.isfile(vocab_file):
|
|
raise ValueError(
|
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
|
|
self.vocab = load_vocab(vocab_file)
|
|
self.ids_to_tokens = collections.OrderedDict(
|
|
[(ids, tok) for tok, ids in self.vocab.items()])
|
|
self.do_basic_tokenize = do_basic_tokenize
|
|
if do_basic_tokenize:
|
|
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
|
|
never_split=never_split,
|
|
tokenize_chinese_chars=tokenize_chinese_chars)
|
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.vocab)
|
|
|
|
def _tokenize(self, text):
|
|
split_tokens = []
|
|
if self.do_basic_tokenize:
|
|
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
|
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
|
split_tokens.append(sub_token)
|
|
else:
|
|
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
|
return split_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str/unicode) in an id using the vocab. """
|
|
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
|
|
return self.ids_to_tokens.get(index, self.unk_token)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
""" Converts a sequence of tokens (string) in a single string. """
|
|
out_string = ' '.join(tokens).replace(' ##', '').strip()
|
|
return out_string
|
|
|
|
def save_vocabulary(self, vocab_path):
|
|
"""Save the tokenizer vocabulary to a directory or file."""
|
|
index = 0
|
|
if os.path.isdir(vocab_path):
|
|
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
|
|
with open(vocab_file, "w", encoding="utf-8") as writer:
|
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
|
|
" Please check that the vocabulary is not corrupted!".format(vocab_file))
|
|
index = token_index
|
|
writer.write(token + u'\n')
|
|
index += 1
|
|
return (vocab_file,)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
|
""" Instantiate a BertTokenizer from pre-trained vocabulary files.
|
|
"""
|
|
if pretrained_model_name_or_path in PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES:
|
|
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
|
|
logger.warning("The pre-trained model you are loading is a cased model but you have not set "
|
|
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
|
|
"you may want to check this behavior.")
|
|
kwargs['do_lower_case'] = False
|
|
elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
|
|
logger.warning("The pre-trained model you are loading is an uncased model but you have set "
|
|
"`do_lower_case` to False. We are setting `do_lower_case=True` for you "
|
|
"but you may want to check this behavior.")
|
|
kwargs['do_lower_case'] = True
|
|
|
|
return super(BertTokenizer, cls)._from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
|
|
|
|
|
|
class BasicTokenizer(object):
|
|
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
|
|
|
|
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True):
|
|
""" Constructs a BasicTokenizer.
|
|
|
|
Args:
|
|
**do_lower_case**: Whether to lower case the input.
|
|
**never_split**: (`optional`) list of str
|
|
Kept for backward compatibility purposes.
|
|
Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
|
|
List of token not to split.
|
|
**tokenize_chinese_chars**: (`optional`) boolean (default True)
|
|
Whether to tokenize Chinese characters.
|
|
This should likely be desactivated for Japanese:
|
|
see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328
|
|
"""
|
|
if never_split is None:
|
|
never_split = []
|
|
self.do_lower_case = do_lower_case
|
|
self.never_split = never_split
|
|
self.tokenize_chinese_chars = tokenize_chinese_chars
|
|
|
|
def tokenize(self, text, never_split=None):
|
|
""" Basic Tokenization of a piece of text.
|
|
Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer.
|
|
|
|
Args:
|
|
**never_split**: (`optional`) list of str
|
|
Kept for backward compatibility purposes.
|
|
Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`)
|
|
List of token not to split.
|
|
"""
|
|
never_split = self.never_split + (never_split if never_split is not None else [])
|
|
text = self._clean_text(text)
|
|
# This was added on November 1st, 2018 for the multilingual and Chinese
|
|
# models. This is also applied to the English models now, but it doesn't
|
|
# matter since the English models were not trained on any Chinese data
|
|
# and generally don't have any Chinese data in them (there are Chinese
|
|
# characters in the vocabulary because Wikipedia does have some Chinese
|
|
# words in the English Wikipedia.).
|
|
if self.tokenize_chinese_chars:
|
|
text = self._tokenize_chinese_chars(text)
|
|
orig_tokens = whitespace_tokenize(text)
|
|
split_tokens = []
|
|
for token in orig_tokens:
|
|
if self.do_lower_case and token not in never_split:
|
|
token = token.lower()
|
|
token = self._run_strip_accents(token)
|
|
split_tokens.extend(self._run_split_on_punc(token))
|
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
|
return output_tokens
|
|
|
|
def _run_strip_accents(self, text):
|
|
"""Strips accents from a piece of text."""
|
|
text = unicodedata.normalize("NFD", text)
|
|
output = []
|
|
for char in text:
|
|
cat = unicodedata.category(char)
|
|
if cat == "Mn":
|
|
continue
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
def _run_split_on_punc(self, text, never_split=None):
|
|
"""Splits punctuation on a piece of text."""
|
|
if never_split is not None and text in never_split:
|
|
return [text]
|
|
chars = list(text)
|
|
i = 0
|
|
start_new_word = True
|
|
output = []
|
|
while i < len(chars):
|
|
char = chars[i]
|
|
if _is_punctuation(char):
|
|
output.append([char])
|
|
start_new_word = True
|
|
else:
|
|
if start_new_word:
|
|
output.append([])
|
|
start_new_word = False
|
|
output[-1].append(char)
|
|
i += 1
|
|
|
|
return ["".join(x) for x in output]
|
|
|
|
def _tokenize_chinese_chars(self, text):
|
|
"""Adds whitespace around any CJK character."""
|
|
output = []
|
|
for char in text:
|
|
cp = ord(char)
|
|
if self._is_chinese_char(cp):
|
|
output.append(" ")
|
|
output.append(char)
|
|
output.append(" ")
|
|
else:
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
def _is_chinese_char(self, cp):
|
|
"""Checks whether CP is the codepoint of a CJK character."""
|
|
# This defines a "chinese character" as anything in the CJK Unicode block:
|
|
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
|
#
|
|
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
|
# despite its name. The modern Korean Hangul alphabet is a different block,
|
|
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
|
# space-separated words, so they are not treated specially and handled
|
|
# like the all of the other languages.
|
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
|
|
(cp >= 0x3400 and cp <= 0x4DBF) or #
|
|
(cp >= 0x20000 and cp <= 0x2A6DF) or #
|
|
(cp >= 0x2A700 and cp <= 0x2B73F) or #
|
|
(cp >= 0x2B740 and cp <= 0x2B81F) or #
|
|
(cp >= 0x2B820 and cp <= 0x2CEAF) or
|
|
(cp >= 0xF900 and cp <= 0xFAFF) or #
|
|
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
|
|
return True
|
|
|
|
return False
|
|
|
|
def _clean_text(self, text):
|
|
"""Performs invalid character removal and whitespace cleanup on text."""
|
|
output = []
|
|
for char in text:
|
|
cp = ord(char)
|
|
if cp == 0 or cp == 0xfffd or _is_control(char):
|
|
continue
|
|
if _is_whitespace(char):
|
|
output.append(" ")
|
|
else:
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
|
|
class WordpieceTokenizer(object):
|
|
"""Runs WordPiece tokenization."""
|
|
|
|
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
|
self.vocab = vocab
|
|
self.unk_token = unk_token
|
|
self.max_input_chars_per_word = max_input_chars_per_word
|
|
|
|
def tokenize(self, text):
|
|
"""Tokenizes a piece of text into its word pieces.
|
|
|
|
This uses a greedy longest-match-first algorithm to perform tokenization
|
|
using the given vocabulary.
|
|
|
|
For example:
|
|
input = "unaffable"
|
|
output = ["un", "##aff", "##able"]
|
|
|
|
Args:
|
|
text: A single token or whitespace separated tokens. This should have
|
|
already been passed through `BasicTokenizer`.
|
|
|
|
Returns:
|
|
A list of wordpiece tokens.
|
|
"""
|
|
|
|
output_tokens = []
|
|
for token in whitespace_tokenize(text):
|
|
chars = list(token)
|
|
if len(chars) > self.max_input_chars_per_word:
|
|
output_tokens.append(self.unk_token)
|
|
continue
|
|
|
|
is_bad = False
|
|
start = 0
|
|
sub_tokens = []
|
|
while start < len(chars):
|
|
end = len(chars)
|
|
cur_substr = None
|
|
while start < end:
|
|
substr = "".join(chars[start:end])
|
|
if start > 0:
|
|
substr = "##" + substr
|
|
if substr in self.vocab:
|
|
cur_substr = substr
|
|
break
|
|
end -= 1
|
|
if cur_substr is None:
|
|
is_bad = True
|
|
break
|
|
sub_tokens.append(cur_substr)
|
|
start = end
|
|
|
|
if is_bad:
|
|
output_tokens.append(self.unk_token)
|
|
else:
|
|
output_tokens.extend(sub_tokens)
|
|
return output_tokens
|
|
|
|
|
|
def _is_whitespace(char):
|
|
"""Checks whether `chars` is a whitespace character."""
|
|
# \t, \n, and \r are technically contorl characters but we treat them
|
|
# as whitespace since they are generally considered as such.
|
|
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
|
return True
|
|
cat = unicodedata.category(char)
|
|
if cat == "Zs":
|
|
return True
|
|
return False
|
|
|
|
|
|
def _is_control(char):
|
|
"""Checks whether `chars` is a control character."""
|
|
# These are technically control characters but we count them as whitespace
|
|
# characters.
|
|
if char == "\t" or char == "\n" or char == "\r":
|
|
return False
|
|
cat = unicodedata.category(char)
|
|
if cat.startswith("C"):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _is_punctuation(char):
|
|
"""Checks whether `chars` is a punctuation character."""
|
|
cp = ord(char)
|
|
# We treat all non-letter/number ASCII as punctuation.
|
|
# Characters such as "^", "$", and "`" are not in the Unicode
|
|
# Punctuation class but we treat them as punctuation anyways, for
|
|
# consistency.
|
|
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
|
|
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
|
return True
|
|
cat = unicodedata.category(char)
|
|
if cat.startswith("P"):
|
|
return True
|
|
return False
|