mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 18:48:24 +06:00
922 lines
44 KiB
Python
922 lines
44 KiB
Python
# coding=utf-8
|
|
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch XLM model.
|
|
"""
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import sys
|
|
from io import open
|
|
|
|
import itertools
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
from .modeling_utils import (PretrainedConfig, PreTrainedModel, add_start_docstrings,
|
|
prune_linear_layer, SequenceSummary, SQuADHead)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
|
|
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
|
|
'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-pytorch_model.bin",
|
|
'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-pytorch_model.bin",
|
|
'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-pytorch_model.bin",
|
|
'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-pytorch_model.bin",
|
|
'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-pytorch_model.bin",
|
|
'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-pytorch_model.bin",
|
|
'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-pytorch_model.bin",
|
|
}
|
|
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
|
|
'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json",
|
|
'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json",
|
|
'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json",
|
|
'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json",
|
|
'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json",
|
|
'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json",
|
|
'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json",
|
|
}
|
|
|
|
|
|
class XLMConfig(PretrainedConfig):
|
|
"""Configuration class to store the configuration of a `XLMModel`.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
|
|
d_model: Size of the encoder layers and the pooler layer.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
d_inner: The size of the "intermediate" (i.e., feed-forward)
|
|
layer in the Transformer encoder.
|
|
ff_activation: The non-linear activation function (function or string) in the
|
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
|
|
untie_r: untie relative position biases
|
|
attn_type: 'bi' for XLM, 'uni' for Transformer-XL
|
|
|
|
dropout: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
dropatt: The dropout ratio for the attention
|
|
probabilities.
|
|
max_position_embeddings: The maximum sequence length that this model might
|
|
ever be used with. Typically set this to something large just in case
|
|
(e.g., 512 or 1024 or 2048).
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
layer_norm_eps: The epsilon used by LayerNorm.
|
|
|
|
dropout: float, dropout rate.
|
|
dropatt: float, dropout rate on attention probabilities.
|
|
init: str, the initialization scheme, either "normal" or "uniform".
|
|
init_range: float, initialize the parameters with a uniform distribution
|
|
in [-init_range, init_range]. Only effective when init="uniform".
|
|
init_std: float, initialize the parameters with a normal distribution
|
|
with mean 0 and stddev init_std. Only effective when init="normal".
|
|
mem_len: int, the number of tokens to cache.
|
|
reuse_len: int, the number of tokens in the currect batch to be cached
|
|
and reused in the future.
|
|
bi_data: bool, whether to use bidirectional input pipeline.
|
|
Usually set to True during pretraining and False during finetuning.
|
|
clamp_len: int, clamp all relative distances larger than clamp_len.
|
|
-1 means no clamping.
|
|
same_length: bool, whether to use the same attention length for each token.
|
|
"""
|
|
pretrained_config_archive_map = XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
|
|
def __init__(self,
|
|
vocab_size_or_config_json_file=30145,
|
|
emb_dim=2048,
|
|
n_layers=12,
|
|
n_heads=16,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
gelu_activation=True,
|
|
sinusoidal_embeddings=False,
|
|
causal=False,
|
|
asm=False,
|
|
n_langs=1,
|
|
max_position_embeddings=512,
|
|
embed_init_std=2048 ** -0.5,
|
|
layer_norm_eps=1e-12,
|
|
init_std=0.02,
|
|
bos_index=0,
|
|
eos_index=1,
|
|
pad_index=2,
|
|
unk_index=3,
|
|
mask_index=5,
|
|
is_encoder=True,
|
|
|
|
finetuning_task=None,
|
|
num_labels=2,
|
|
summary_type='first',
|
|
summary_use_proj=True,
|
|
summary_activation=None,
|
|
summary_proj_to_labels=True,
|
|
summary_first_dropout=0.1,
|
|
start_n_top=5,
|
|
end_n_top=5,
|
|
**kwargs):
|
|
"""Constructs XLMConfig.
|
|
"""
|
|
super(XLMConfig, self).__init__(**kwargs)
|
|
|
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)):
|
|
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.n_words = vocab_size_or_config_json_file
|
|
self.emb_dim = emb_dim
|
|
self.n_layers = n_layers
|
|
self.n_heads = n_heads
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.gelu_activation = gelu_activation
|
|
self.sinusoidal_embeddings = sinusoidal_embeddings
|
|
self.causal = causal
|
|
self.asm = asm
|
|
self.n_langs = n_langs
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.bos_index = bos_index
|
|
self.eos_index = eos_index
|
|
self.pad_index = pad_index
|
|
self.unk_index = unk_index
|
|
self.mask_index = mask_index
|
|
self.is_encoder = is_encoder
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.embed_init_std = embed_init_std
|
|
self.init_std = init_std
|
|
self.finetuning_task = finetuning_task
|
|
self.num_labels = num_labels
|
|
self.summary_type = summary_type
|
|
self.summary_use_proj = summary_use_proj
|
|
self.summary_activation = summary_activation
|
|
self.summary_proj_to_labels = summary_proj_to_labels
|
|
self.summary_first_dropout = summary_first_dropout
|
|
self.start_n_top = start_n_top
|
|
self.end_n_top = end_n_top
|
|
else:
|
|
raise ValueError("First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)")
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self.n_words
|
|
|
|
@vocab_size.setter
|
|
def vocab_size(self, value):
|
|
self.n_words = value
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.emb_dim
|
|
|
|
@property
|
|
def num_attention_heads(self):
|
|
return self.n_heads
|
|
|
|
@property
|
|
def num_hidden_layers(self):
|
|
return self.n_layers
|
|
|
|
|
|
def create_sinusoidal_embeddings(n_pos, dim, out):
|
|
position_enc = np.array([
|
|
[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
|
|
for pos in range(n_pos)
|
|
])
|
|
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
|
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
|
out.detach_()
|
|
out.requires_grad = False
|
|
|
|
|
|
def gelu(x):
|
|
"""
|
|
GELU activation
|
|
https://arxiv.org/abs/1606.08415
|
|
https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
|
|
https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py
|
|
"""
|
|
# return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
|
|
def get_masks(slen, lengths, causal, padding_mask=None):
|
|
"""
|
|
Generate hidden states mask, and optionally an attention mask.
|
|
"""
|
|
bs = lengths.size(0)
|
|
if padding_mask is not None:
|
|
mask = padding_mask
|
|
else:
|
|
assert lengths.max().item() <= slen
|
|
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
|
|
mask = alen < lengths[:, None]
|
|
|
|
# attention mask is the same as mask, or triangular inferior attention (causal)
|
|
if causal:
|
|
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
|
|
else:
|
|
attn_mask = mask
|
|
|
|
# sanity check
|
|
assert mask.size() == (bs, slen)
|
|
assert causal is False or attn_mask.size() == (bs, slen, slen)
|
|
|
|
return mask, attn_mask
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
|
|
NEW_ID = itertools.count()
|
|
|
|
def __init__(self, n_heads, dim, config):
|
|
super(MultiHeadAttention, self).__init__()
|
|
self.layer_id = next(MultiHeadAttention.NEW_ID)
|
|
self.output_attentions = config.output_attentions
|
|
self.dim = dim
|
|
self.n_heads = n_heads
|
|
self.dropout = config.attention_dropout
|
|
assert self.dim % self.n_heads == 0
|
|
|
|
self.q_lin = nn.Linear(dim, dim)
|
|
self.k_lin = nn.Linear(dim, dim)
|
|
self.v_lin = nn.Linear(dim, dim)
|
|
self.out_lin = nn.Linear(dim, dim)
|
|
|
|
def prune_heads(self, heads):
|
|
attention_head_size = self.dim // self.n_heads
|
|
if len(heads) == 0:
|
|
return
|
|
mask = torch.ones(self.n_heads, attention_head_size)
|
|
for head in heads:
|
|
mask[head] = 0
|
|
mask = mask.view(-1).contiguous().eq(1)
|
|
index = torch.arange(len(mask))[mask].long()
|
|
# Prune linear layers
|
|
self.q_lin = prune_linear_layer(self.q_lin, index)
|
|
self.k_lin = prune_linear_layer(self.k_lin, index)
|
|
self.v_lin = prune_linear_layer(self.v_lin, index)
|
|
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
|
|
# Update hyper params
|
|
self.n_heads = self.n_heads - len(heads)
|
|
self.dim = attention_head_size * self.n_heads
|
|
|
|
def forward(self, input, mask, kv=None, cache=None, head_mask=None):
|
|
"""
|
|
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
|
"""
|
|
# Input is (bs, qlen, dim)
|
|
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
|
bs, qlen, dim = input.size()
|
|
if kv is None:
|
|
klen = qlen if cache is None else cache['slen'] + qlen
|
|
else:
|
|
klen = kv.size(1)
|
|
# assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
|
|
n_heads = self.n_heads
|
|
dim_per_head = self.dim // n_heads
|
|
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
|
|
|
|
def shape(x):
|
|
""" projection """
|
|
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
|
|
|
def unshape(x):
|
|
""" compute context """
|
|
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
|
|
|
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
|
if kv is None:
|
|
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
|
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
|
elif cache is None or self.layer_id not in cache:
|
|
k = v = kv
|
|
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
|
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
|
|
|
if cache is not None:
|
|
if self.layer_id in cache:
|
|
if kv is None:
|
|
k_, v_ = cache[self.layer_id]
|
|
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
|
|
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
|
|
else:
|
|
k, v = cache[self.layer_id]
|
|
cache[self.layer_id] = (k, v)
|
|
|
|
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
|
|
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
|
|
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
|
|
scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
|
|
|
|
weights = F.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
|
|
weights = F.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
weights = weights * head_mask
|
|
|
|
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
|
context = unshape(context) # (bs, qlen, dim)
|
|
|
|
outputs = (self.out_lin(context),)
|
|
if self.output_attentions:
|
|
outputs = outputs + (weights,)
|
|
return outputs
|
|
|
|
|
|
class TransformerFFN(nn.Module):
|
|
|
|
def __init__(self, in_dim, dim_hidden, out_dim, config):
|
|
super(TransformerFFN, self).__init__()
|
|
self.dropout = config.dropout
|
|
self.lin1 = nn.Linear(in_dim, dim_hidden)
|
|
self.lin2 = nn.Linear(dim_hidden, out_dim)
|
|
self.act = gelu if config.gelu_activation else F.relu
|
|
|
|
def forward(self, input):
|
|
x = self.lin1(input)
|
|
x = self.act(x)
|
|
x = self.lin2(x)
|
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
|
return x
|
|
|
|
|
|
class XLMPreTrainedModel(PreTrainedModel):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
config_class = XLMConfig
|
|
pretrained_model_archive_map = XLM_PRETRAINED_MODEL_ARCHIVE_MAP
|
|
load_tf_weights = None
|
|
base_model_prefix = "transformer"
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
|
|
|
|
def init_weights(self, module):
|
|
""" Initialize the weights. """
|
|
if isinstance(module, nn.Embedding):
|
|
if self.config is not None and self.config.embed_init_std is not None:
|
|
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
|
|
if isinstance(module, nn.Linear):
|
|
if self.config is not None and self.config.init_std is not None:
|
|
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
|
|
if hasattr(module, 'bias') and module.bias is not None:
|
|
nn.init.constant_(module.bias, 0.)
|
|
if isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
XLM_START_DOCSTRING = r""" The XLM model was proposed in
|
|
`Cross-lingual Language Model Pretraining`_
|
|
by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:
|
|
|
|
- a causal language modeling (CLM) objective (next token prediction),
|
|
- a masked language modeling (MLM) objective (Bert-like), or
|
|
- a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)
|
|
|
|
Original code can be found `here`_.
|
|
|
|
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
|
|
refer to the PyTorch documentation for all matter related to general usage and behavior.
|
|
|
|
.. _`Cross-lingual Language Model Pretraining`:
|
|
https://arxiv.org/abs/1901.07291
|
|
|
|
.. _`torch.nn.Module`:
|
|
https://pytorch.org/docs/stable/nn.html#module
|
|
|
|
.. _`here`:
|
|
https://github.com/facebookresearch/XLM
|
|
|
|
Parameters:
|
|
config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
|
|
"""
|
|
|
|
XLM_INPUTS_DOCSTRING = r"""
|
|
Inputs:
|
|
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of input sequence tokens in the vocabulary.
|
|
Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`.
|
|
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
|
|
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
|
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of positions of each input sequence tokens in the position embeddings.
|
|
Selected in the range ``[0, config.max_position_embeddings - 1[``.
|
|
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
|
|
The embeddings from these tokens will be summed with the respective token embeddings.
|
|
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
|
|
**langs**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
A parallel sequence of tokens to be used to indicate the language of each token in the input.
|
|
Indices are selected in the pre-trained language vocabulary,
|
|
i.e. in the range ``[0, config.n_langs - 1[``.
|
|
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
|
**lengths**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Length of each sentence that can be used to avoid performing attention on padding token indices.
|
|
You can also use `attention_mask` for the same result (see above), kept here for compatbility.
|
|
Indices selected in ``[0, ..., input_ids.size(-1)]``:
|
|
**cache**:
|
|
dictionary with ``torch.FloatTensor`` that contains pre-computed
|
|
hidden-states (key and values in the attention blocks) as computed by the model
|
|
(see `cache` output below). Can be used to speed up sequential decoding.
|
|
The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
|
|
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
|
Mask to nullify selected heads of the self-attention modules.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
|
"""
|
|
|
|
@add_start_docstrings("The bare XLM Model transformer outputing raw hidden-states without any specific head on top.",
|
|
XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
|
|
class XLMModel(XLMPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
|
Sequence of hidden-states at the last layer of the model.
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
|
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
|
>>> model = XLMModel(config)
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
>>> outputs = model(input_ids)
|
|
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
|
|
|
"""
|
|
ATTRIBUTES = ['encoder', 'eos_index', 'pad_index', # 'with_output',
|
|
'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads',
|
|
'hidden_dim', 'dropout', 'attention_dropout', 'asm',
|
|
'asm_cutoffs', 'asm_div_value']
|
|
|
|
def __init__(self, config): #, dico, is_encoder, with_output):
|
|
super(XLMModel, self).__init__(config)
|
|
self.output_attentions = config.output_attentions
|
|
self.output_hidden_states = config.output_hidden_states
|
|
|
|
# encoder / decoder, output layer
|
|
self.is_encoder = config.is_encoder
|
|
self.is_decoder = not config.is_encoder
|
|
if self.is_decoder:
|
|
raise NotImplementedError("Currently XLM can only be used as an encoder")
|
|
# self.with_output = with_output
|
|
self.causal = config.causal
|
|
|
|
# dictionary / languages
|
|
self.n_langs = config.n_langs
|
|
self.n_words = config.n_words
|
|
self.eos_index = config.eos_index
|
|
self.pad_index = config.pad_index
|
|
# self.dico = dico
|
|
# self.id2lang = config.id2lang
|
|
# self.lang2id = config.lang2id
|
|
# assert len(self.dico) == self.n_words
|
|
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
|
|
|
|
# model parameters
|
|
self.dim = config.emb_dim # 512 by default
|
|
self.hidden_dim = self.dim * 4 # 2048 by default
|
|
self.n_heads = config.n_heads # 8 by default
|
|
self.n_layers = config.n_layers
|
|
self.dropout = config.dropout
|
|
self.attention_dropout = config.attention_dropout
|
|
assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'
|
|
|
|
# embeddings
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
|
|
if config.sinusoidal_embeddings:
|
|
create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
|
|
if config.n_langs > 1:
|
|
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
|
|
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
|
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
|
|
|
|
# transformer layers
|
|
self.attentions = nn.ModuleList()
|
|
self.layer_norm1 = nn.ModuleList()
|
|
self.ffns = nn.ModuleList()
|
|
self.layer_norm2 = nn.ModuleList()
|
|
# if self.is_decoder:
|
|
# self.layer_norm15 = nn.ModuleList()
|
|
# self.encoder_attn = nn.ModuleList()
|
|
|
|
for _ in range(self.n_layers):
|
|
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
|
|
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
|
# if self.is_decoder:
|
|
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
|
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
|
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
|
|
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def _resize_token_embeddings(self, new_num_tokens):
|
|
self.embeddings = self._get_resized_embeddings(self.embeddings, new_num_tokens)
|
|
return self.embeddings
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
See base class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.attentions[layer].prune_heads(heads)
|
|
|
|
def forward(self, input_ids, lengths=None, position_ids=None, langs=None,
|
|
token_type_ids=None, attention_mask=None, cache=None, head_mask=None): # src_enc=None, src_len=None,
|
|
if lengths is None:
|
|
lengths = (input_ids != self.pad_index).sum(dim=1).long()
|
|
# mask = input_ids != self.pad_index
|
|
|
|
# check inputs
|
|
bs, slen = input_ids.size()
|
|
assert lengths.size(0) == bs
|
|
assert lengths.max().item() <= slen
|
|
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
|
|
# assert (src_enc is None) == (src_len is None)
|
|
# if src_enc is not None:
|
|
# assert self.is_decoder
|
|
# assert src_enc.size(0) == bs
|
|
|
|
# generate masks
|
|
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
|
|
# if self.is_decoder and src_enc is not None:
|
|
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
|
|
|
# position_ids
|
|
if position_ids is None:
|
|
position_ids = input_ids.new((slen,)).long()
|
|
position_ids = torch.arange(slen, out=position_ids).unsqueeze(0)
|
|
else:
|
|
assert position_ids.size() == (bs, slen) # (slen, bs)
|
|
# position_ids = position_ids.transpose(0, 1)
|
|
|
|
# langs
|
|
if langs is not None:
|
|
assert langs.size() == (bs, slen) # (slen, bs)
|
|
# langs = langs.transpose(0, 1)
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.n_layers
|
|
|
|
# do not recompute cached elements
|
|
if cache is not None:
|
|
_slen = slen - cache['slen']
|
|
input_ids = input_ids[:, -_slen:]
|
|
position_ids = position_ids[:, -_slen:]
|
|
if langs is not None:
|
|
langs = langs[:, -_slen:]
|
|
mask = mask[:, -_slen:]
|
|
attn_mask = attn_mask[:, -_slen:]
|
|
|
|
# embeddings
|
|
tensor = self.embeddings(input_ids)
|
|
tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor)
|
|
if langs is not None:
|
|
tensor = tensor + self.lang_embeddings(langs)
|
|
if token_type_ids is not None:
|
|
tensor = tensor + self.embeddings(token_type_ids)
|
|
tensor = self.layer_norm_emb(tensor)
|
|
tensor = F.dropout(tensor, p=self.dropout, training=self.training)
|
|
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
|
|
|
# transformer layers
|
|
hidden_states = ()
|
|
attentions = ()
|
|
for i in range(self.n_layers):
|
|
if self.output_hidden_states:
|
|
hidden_states = hidden_states + (tensor,)
|
|
|
|
# self attention
|
|
attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
|
|
attn = attn_outputs[0]
|
|
if self.output_attentions:
|
|
attentions = attentions + (attn_outputs[1],)
|
|
attn = F.dropout(attn, p=self.dropout, training=self.training)
|
|
tensor = tensor + attn
|
|
tensor = self.layer_norm1[i](tensor)
|
|
|
|
# encoder attention (for decoder only)
|
|
# if self.is_decoder and src_enc is not None:
|
|
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
|
# attn = F.dropout(attn, p=self.dropout, training=self.training)
|
|
# tensor = tensor + attn
|
|
# tensor = self.layer_norm15[i](tensor)
|
|
|
|
# FFN
|
|
tensor = tensor + self.ffns[i](tensor)
|
|
tensor = self.layer_norm2[i](tensor)
|
|
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
|
|
|
# Add last hidden state
|
|
if self.output_hidden_states:
|
|
hidden_states = hidden_states + (tensor,)
|
|
|
|
# update cache length
|
|
if cache is not None:
|
|
cache['slen'] += tensor.size(1)
|
|
|
|
# move back sequence length to dimension 0
|
|
# tensor = tensor.transpose(0, 1)
|
|
|
|
outputs = (tensor,)
|
|
if self.output_hidden_states:
|
|
outputs = outputs + (hidden_states,)
|
|
if self.output_attentions:
|
|
outputs = outputs + (attentions,)
|
|
return outputs # outputs, (hidden_states), (attentions)
|
|
|
|
|
|
class XLMPredLayer(nn.Module):
|
|
"""
|
|
Prediction layer (cross_entropy or adaptive_softmax).
|
|
"""
|
|
def __init__(self, config):
|
|
super(XLMPredLayer, self).__init__()
|
|
self.asm = config.asm
|
|
self.n_words = config.n_words
|
|
self.pad_index = config.pad_index
|
|
dim = config.emb_dim
|
|
|
|
if config.asm is False:
|
|
self.proj = nn.Linear(dim, config.n_words, bias=True)
|
|
else:
|
|
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
|
in_features=dim,
|
|
n_classes=config.n_words,
|
|
cutoffs=config.asm_cutoffs,
|
|
div_value=config.asm_div_value,
|
|
head_bias=True, # default is False
|
|
)
|
|
|
|
def forward(self, x, y=None):
|
|
""" Compute the loss, and optionally the scores.
|
|
"""
|
|
outputs = ()
|
|
if self.asm is False:
|
|
scores = self.proj(x).view(-1, self.n_words)
|
|
outputs = (scores,) + outputs
|
|
if y is not None:
|
|
loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
|
|
outputs = (loss,) + outputs
|
|
else:
|
|
scores = self.proj.log_prob(x)
|
|
outputs = (scores,) + outputs
|
|
if y is not None:
|
|
_, loss = self.proj(x, y)
|
|
outputs = (loss,) + outputs
|
|
|
|
return outputs
|
|
|
|
|
|
@add_start_docstrings("""The XLM Model transformer with a language modeling head on top
|
|
(linear layer with weights tied to the input embeddings). """,
|
|
XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
|
|
class XLMWithLMHeadModel(XLMPreTrainedModel):
|
|
r"""
|
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Labels for language modeling.
|
|
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
|
|
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
|
|
All labels set to ``-1`` are ignored (masked), the loss is only
|
|
computed for labels in ``[0, ..., config.vocab_size]``
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Language modeling loss.
|
|
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
|
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
|
>>> model = XLMWithLMHeadModel(config)
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
>>> outputs = model(input_ids)
|
|
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(XLMWithLMHeadModel, self).__init__(config)
|
|
self.transformer = XLMModel(config)
|
|
self.pred_layer = XLMPredLayer(config)
|
|
|
|
self.apply(self.init_weights)
|
|
self.tie_weights()
|
|
|
|
def tie_weights(self):
|
|
""" Make sure we are sharing the embeddings
|
|
"""
|
|
self._tie_or_clone_weights(self.pred_layer.proj, self.transformer.embeddings)
|
|
|
|
def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
|
|
attention_mask=None, cache=None, labels=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
|
|
token_type_ids=token_type_ids, langs=langs,
|
|
attention_mask=attention_mask, cache=cache, head_mask=head_mask)
|
|
|
|
output = transformer_outputs[0]
|
|
outputs = self.pred_layer(output, labels)
|
|
outputs = outputs + transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here
|
|
|
|
return outputs
|
|
|
|
|
|
@add_start_docstrings("""XLM Model with a sequence classification/regression head on top (a linear layer on top of
|
|
the pooled output) e.g. for GLUE tasks. """,
|
|
XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
|
|
class XLMForSequenceClassification(XLMPreTrainedModel):
|
|
r"""
|
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for computing the sequence classification/regression loss.
|
|
Indices should be in ``[0, ..., config.num_labels]``.
|
|
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
|
|
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Classification (or regression if config.num_labels==1) loss.
|
|
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
|
|
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
|
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
|
>>>
|
|
>>> model = XLMForSequenceClassification(config)
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
|
>>> outputs = model(input_ids, labels=labels)
|
|
>>> loss, logits = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(XLMForSequenceClassification, self).__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.transformer = XLMModel(config)
|
|
self.sequence_summary = SequenceSummary(config)
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
|
|
attention_mask=None, cache=None, labels=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
|
|
token_type_ids=token_type_ids, langs=langs,
|
|
attention_mask=attention_mask, cache=cache, head_mask=head_mask)
|
|
|
|
output = transformer_outputs[0]
|
|
logits = self.sequence_summary(output)
|
|
|
|
outputs = (logits,) + transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here
|
|
|
|
if labels is not None:
|
|
if self.num_labels == 1:
|
|
# We are doing regression
|
|
loss_fct = MSELoss()
|
|
loss = loss_fct(logits.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
outputs = (loss,) + outputs
|
|
|
|
return outputs
|
|
|
|
|
|
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
|
|
the hidden-states output to compute `span start logits` and `span end logits`). """,
|
|
XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
|
|
class XLMForQuestionAnswering(XLMPreTrainedModel):
|
|
r"""
|
|
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`).
|
|
Position outside of the sequence are not taken into account for computing the loss.
|
|
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`).
|
|
Position outside of the sequence are not taken into account for computing the loss.
|
|
**is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels whether a question has an answer or no answer (SQuAD 2.0)
|
|
**cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
|
|
**p_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...)
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
|
|
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
|
|
Span-start scores (before SoftMax).
|
|
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
|
|
Span-end scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
|
|
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
|
|
>>>
|
|
>>> model = XLMForQuestionAnswering(config)
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
>>> start_positions = torch.tensor([1])
|
|
>>> end_positions = torch.tensor([3])
|
|
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
|
>>> loss, start_scores, end_scores = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(XLMForQuestionAnswering, self).__init__(config)
|
|
|
|
self.transformer = XLMModel(config)
|
|
self.qa_outputs = SQuADHead(config)
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def forward(self, input_ids, lengths=None, position_ids=None, langs=None, token_type_ids=None,
|
|
attention_mask=None, cache=None, start_positions=None, end_positions=None,
|
|
cls_index=None, is_impossible=None, p_mask=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, lengths=lengths, position_ids=position_ids,
|
|
token_type_ids=token_type_ids, langs=langs,
|
|
attention_mask=attention_mask, cache=cache, head_mask=head_mask)
|
|
|
|
output = transformer_outputs[0]
|
|
|
|
outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions,
|
|
cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask)
|
|
|
|
outputs = outputs + transformer_outputs[1:] # Keep new_mems and attention/hidden states if they are here
|
|
|
|
return outputs
|