mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 18:48:24 +06:00
735 lines
36 KiB
Python
735 lines
36 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch OpenAI GPT-2 model."""
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import collections
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
from io import open
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import CrossEntropyLoss
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
|
|
PreTrainedModel, prune_conv1d_layer, SequenceSummary,
|
|
add_start_docstrings)
|
|
from .modeling_bert import BertLayerNorm as LayerNorm
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin",
|
|
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.bin"}
|
|
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
|
|
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json"}
|
|
|
|
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
""" Load tf checkpoints in a pytorch model
|
|
"""
|
|
try:
|
|
import re
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions.")
|
|
raise
|
|
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
names = []
|
|
arrays = []
|
|
for name, shape in init_vars:
|
|
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
|
array = tf.train.load_variable(tf_path, name)
|
|
names.append(name)
|
|
arrays.append(array.squeeze())
|
|
|
|
for name, array in zip(names, arrays):
|
|
name = name[6:] # skip "model/"
|
|
name = name.split('/')
|
|
pointer = model
|
|
for m_name in name:
|
|
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
|
|
l = re.split(r'(\d+)', m_name)
|
|
else:
|
|
l = [m_name]
|
|
if l[0] == 'w' or l[0] == 'g':
|
|
pointer = getattr(pointer, 'weight')
|
|
elif l[0] == 'b':
|
|
pointer = getattr(pointer, 'bias')
|
|
elif l[0] == 'wpe' or l[0] == 'wte':
|
|
pointer = getattr(pointer, l[0])
|
|
pointer = getattr(pointer, 'weight')
|
|
else:
|
|
pointer = getattr(pointer, l[0])
|
|
if len(l) >= 2:
|
|
num = int(l[1])
|
|
pointer = pointer[num]
|
|
try:
|
|
assert pointer.shape == array.shape
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
logger.info("Initialize PyTorch weight {}".format(name))
|
|
pointer.data = torch.from_numpy(array)
|
|
return model
|
|
|
|
|
|
def gelu(x):
|
|
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
|
|
|
|
class GPT2Config(PretrainedConfig):
|
|
"""Configuration class to store the configuration of a `GPT2Model`.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
|
|
n_positions: Number of positional embeddings.
|
|
n_ctx: Size of the causal mask (usually same as n_positions).
|
|
n_embd: Dimensionality of the embeddings and hidden states.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
layer_norm_epsilon: epsilon to use in the layer norm layers
|
|
resid_pdrop: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attn_pdrop: The dropout ratio for the attention
|
|
probabilities.
|
|
embd_pdrop: The dropout ratio for the embeddings.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
"""
|
|
pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size_or_config_json_file=50257,
|
|
n_positions=1024,
|
|
n_ctx=1024,
|
|
n_embd=768,
|
|
n_layer=12,
|
|
n_head=12,
|
|
resid_pdrop=0.1,
|
|
embd_pdrop=0.1,
|
|
attn_pdrop=0.1,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
|
|
num_labels=1,
|
|
summary_type='token_ids',
|
|
summary_use_proj=True,
|
|
summary_activation=None,
|
|
summary_proj_to_labels=True,
|
|
summary_first_dropout=0.1,
|
|
**kwargs
|
|
):
|
|
"""Constructs GPT2Config.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
|
|
n_positions: Number of positional embeddings.
|
|
n_ctx: Size of the causal mask (usually same as n_positions).
|
|
n_embd: Dimensionality of the embeddings and hidden states.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
layer_norm_epsilon: epsilon to use in the layer norm layers
|
|
resid_pdrop: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attn_pdrop: The dropout ratio for the attention
|
|
probabilities.
|
|
embd_pdrop: The dropout ratio for the embeddings.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
"""
|
|
super(GPT2Config, self).__init__(**kwargs)
|
|
|
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)):
|
|
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.vocab_size = vocab_size_or_config_json_file
|
|
self.n_ctx = n_ctx
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.resid_pdrop = resid_pdrop
|
|
self.embd_pdrop = embd_pdrop
|
|
self.attn_pdrop = attn_pdrop
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
|
|
self.num_labels = num_labels
|
|
self.summary_type = summary_type
|
|
self.summary_use_proj = summary_use_proj
|
|
self.summary_activation = summary_activation
|
|
self.summary_first_dropout = summary_first_dropout
|
|
self.summary_proj_to_labels = summary_proj_to_labels
|
|
else:
|
|
raise ValueError(
|
|
"First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)"
|
|
)
|
|
|
|
@property
|
|
def max_position_embeddings(self):
|
|
return self.n_positions
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.n_embd
|
|
|
|
@property
|
|
def num_attention_heads(self):
|
|
return self.n_head
|
|
|
|
@property
|
|
def num_hidden_layers(self):
|
|
return self.n_layer
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, nx, n_ctx, config, scale=False):
|
|
super(Attention, self).__init__()
|
|
self.output_attentions = config.output_attentions
|
|
|
|
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
|
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
|
assert n_state % config.n_head == 0
|
|
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
|
|
self.n_head = config.n_head
|
|
self.split_size = n_state
|
|
self.scale = scale
|
|
|
|
self.c_attn = Conv1D(n_state * 3, nx)
|
|
self.c_proj = Conv1D(n_state, nx)
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
mask = torch.ones(self.n_head, self.split_size // self.n_head)
|
|
for head in heads:
|
|
mask[head] = 0
|
|
mask = mask.view(-1).contiguous().eq(1)
|
|
index = torch.arange(len(mask))[mask].long()
|
|
index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
|
|
# Prune conv1d layers
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
|
# Update hyper params
|
|
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
|
self.n_head = self.n_head - len(heads)
|
|
|
|
def _attn(self, q, k, v, head_mask=None):
|
|
w = torch.matmul(q, k)
|
|
if self.scale:
|
|
w = w / math.sqrt(v.size(-1))
|
|
nd, ns = w.size(-2), w.size(-1)
|
|
b = self.bias[:, :, ns-nd:ns, :ns]
|
|
w = w * b - 1e4 * (1 - b)
|
|
|
|
w = nn.Softmax(dim=-1)(w)
|
|
w = self.attn_dropout(w)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
w = w * head_mask
|
|
|
|
outputs = [torch.matmul(w, v)]
|
|
if self.output_attentions:
|
|
outputs.append(w)
|
|
return outputs
|
|
|
|
def merge_heads(self, x):
|
|
x = x.permute(0, 2, 1, 3).contiguous()
|
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
|
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
|
|
|
def split_heads(self, x, k=False):
|
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
|
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
|
if k:
|
|
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
|
else:
|
|
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
|
|
|
def forward(self, x, layer_past=None, head_mask=None):
|
|
x = self.c_attn(x)
|
|
query, key, value = x.split(self.split_size, dim=2)
|
|
query = self.split_heads(query)
|
|
key = self.split_heads(key, k=True)
|
|
value = self.split_heads(value)
|
|
if layer_past is not None:
|
|
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
|
|
key = torch.cat((past_key, key), dim=-1)
|
|
value = torch.cat((past_value, value), dim=-2)
|
|
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
|
|
|
|
attn_outputs = self._attn(query, key, value, head_mask)
|
|
a = attn_outputs[0]
|
|
|
|
a = self.merge_heads(a)
|
|
a = self.c_proj(a)
|
|
a = self.resid_dropout(a)
|
|
|
|
outputs = [a, present] + attn_outputs[1:]
|
|
return outputs # a, present, (attentions)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
|
super(MLP, self).__init__()
|
|
nx = config.n_embd
|
|
self.c_fc = Conv1D(n_state, nx)
|
|
self.c_proj = Conv1D(nx, n_state)
|
|
self.act = gelu
|
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def forward(self, x):
|
|
h = self.act(self.c_fc(x))
|
|
h2 = self.c_proj(h)
|
|
return self.dropout(h2)
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, n_ctx, config, scale=False):
|
|
super(Block, self).__init__()
|
|
nx = config.n_embd
|
|
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
|
|
self.attn = Attention(nx, n_ctx, config, scale)
|
|
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
|
|
self.mlp = MLP(4 * nx, config)
|
|
|
|
def forward(self, x, layer_past=None, head_mask=None):
|
|
output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
|
|
a = output_attn[0] # output_attn: a, present, (attentions)
|
|
|
|
x = x + a
|
|
m = self.mlp(self.ln_2(x))
|
|
x = x + m
|
|
|
|
outputs = [x] + output_attn[1:]
|
|
return outputs # x, present, (attentions)
|
|
|
|
|
|
class GPT2PreTrainedModel(PreTrainedModel):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
config_class = GPT2Config
|
|
pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
|
|
load_tf_weights = load_tf_weights_in_gpt2
|
|
base_model_prefix = "transformer"
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)
|
|
|
|
def init_weights(self, module):
|
|
""" Initialize the weights.
|
|
"""
|
|
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
GPT2_START_DOCSTRING = r""" OpenAI GPT-2 model was proposed in
|
|
`Language Models are Unsupervised Multitask Learners`_
|
|
by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
|
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
|
|
corpus of ~40 GB of text data.
|
|
|
|
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
|
|
refer to the PyTorch documentation for all matter related to general usage and behavior.
|
|
|
|
.. _`Language Models are Unsupervised Multitask Learners`:
|
|
https://openai.com/blog/better-language-models/
|
|
|
|
.. _`torch.nn.Module`:
|
|
https://pytorch.org/docs/stable/nn.html#module
|
|
|
|
Parameters:
|
|
config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
|
|
"""
|
|
|
|
GPT2_INPUTS_DOCSTRING = r""" Inputs:
|
|
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of input sequence tokens in the vocabulary.
|
|
Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
|
|
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
|
|
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
|
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of positions of each input sequence tokens in the position embeddings.
|
|
Selected in the range ``[0, config.max_position_embeddings - 1[``.
|
|
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
|
|
The embeddings from these tokens will be summed with the respective token embeddings.
|
|
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
|
|
**past**:
|
|
list of ``torch.FloatTensor`` (one for each layer):
|
|
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
|
(see `past` output below). Can be used to speed up sequential decoding.
|
|
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
|
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
|
Mask to nullify selected heads of the self-attention modules.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
|
"""
|
|
|
|
@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
|
|
GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
|
|
class GPT2Model(GPT2PreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
|
Sequence of hidden-states at the last layer of the model.
|
|
**past**:
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
that contains pre-computed hidden-states (key and values in the attention blocks).
|
|
Can be used (see `past` input) to speed up sequential decoding.
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = GPT2Config.from_pretrained('gpt2')
|
|
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
>>> model = GPT2Model(config)
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
>>> outputs = model(input_ids)
|
|
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(GPT2Model, self).__init__(config)
|
|
self.output_hidden_states = config.output_hidden_states
|
|
self.output_attentions = config.output_attentions
|
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
|
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
|
|
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def _resize_token_embeddings(self, new_num_tokens):
|
|
self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
|
|
return self.wte
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.h[layer].attn.prune_heads(heads)
|
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
|
|
if past is None:
|
|
past_length = 0
|
|
past = [None] * len(self.h)
|
|
else:
|
|
past_length = past[0][0].size(-2)
|
|
if position_ids is None:
|
|
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
|
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# head_mask has shape n_layer x batch x n_heads x N x N
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.config.n_layer
|
|
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_ids.size(-1))
|
|
position_ids = position_ids.view(-1, position_ids.size(-1))
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
else:
|
|
token_type_embeds = 0
|
|
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
output_shape = input_shape + (hidden_states.size(-1),)
|
|
|
|
presents = ()
|
|
all_attentions = []
|
|
all_hidden_states = ()
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past)):
|
|
if self.output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
|
|
|
|
outputs = block(hidden_states, layer_past, head_mask[i])
|
|
hidden_states, present = outputs[:2]
|
|
presents = presents + (present,)
|
|
|
|
if self.output_attentions:
|
|
all_attentions.append(outputs[2])
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(*output_shape)
|
|
# Add last hidden state
|
|
if self.output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
outputs = (hidden_states, presents)
|
|
if self.output_hidden_states:
|
|
outputs = outputs + (all_hidden_states,)
|
|
if self.output_attentions:
|
|
# let the number of heads free (-1) so we can extract attention even after head pruning
|
|
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
|
|
all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
|
|
outputs = outputs + (all_attentions,)
|
|
return outputs # last hidden state, presents, (all hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
|
|
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
|
|
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
r"""
|
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Labels for language modeling.
|
|
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
|
|
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
|
|
All labels set to ``-1`` are ignored (masked), the loss is only
|
|
computed for labels in ``[0, ..., config.vocab_size]``
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Language modeling loss.
|
|
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
**past**:
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
that contains pre-computed hidden-states (key and values in the attention blocks).
|
|
Can be used (see `past` input) to speed up sequential decoding.
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = GPT2Config.from_pretrained('gpt2')
|
|
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
>>> model = GPT2LMHeadModel(config)
|
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
>>> outputs = model(input_ids, labels=input_ids)
|
|
>>> loss, logits = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(GPT2LMHeadModel, self).__init__(config)
|
|
self.transformer = GPT2Model(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
self.apply(self.init_weights)
|
|
self.tie_weights()
|
|
|
|
def tie_weights(self):
|
|
""" Make sure we are sharing the input and output embeddings.
|
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
|
"""
|
|
self._tie_or_clone_weights(self.lm_head,
|
|
self.transformer.wte)
|
|
|
|
def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
|
|
past=past, head_mask=head_mask)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
outputs = (lm_logits,) + transformer_outputs[1:]
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
|
shift_labels.view(-1))
|
|
outputs = (loss,) + outputs
|
|
|
|
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
|
|
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
|
|
The language modeling head has its weights tied to the input embeddings,
|
|
the classification head takes as input the input of a specified classification token index in the intput sequence).
|
|
""", GPT2_START_DOCSTRING)
|
|
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
r""" Inputs:
|
|
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
|
|
Indices of input sequence tokens in the vocabulary.
|
|
The second dimension of the input (`num_choices`) indicates the number of choices to score.
|
|
Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
|
|
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
|
|
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
|
**mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
|
|
Index of the classification token in each input sequence.
|
|
Selected in the range ``[0, input_ids.size(-1) - 1[``.
|
|
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
|
|
Indices of positions of each input sequence tokens in the position embeddings.
|
|
Selected in the range ``[0, config.max_position_embeddings - 1[``.
|
|
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
|
|
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
|
|
The embeddings from these tokens will be summed with the respective token embeddings.
|
|
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
|
|
**past**:
|
|
list of ``torch.FloatTensor`` (one for each layer):
|
|
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
|
(see `past` output below). Can be used to speed up sequential decoding.
|
|
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
|
|
Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
|
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
|
Mask to nullify selected heads of the self-attention modules.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
|
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Labels for language modeling.
|
|
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
|
|
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
|
|
All labels set to ``-1`` are ignored (masked), the loss is only
|
|
computed for labels in ``[0, ..., config.vocab_size]``
|
|
**multiple_choice_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
|
|
Labels for computing the multiple choice classification loss.
|
|
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
|
|
of the input tensors. (see `input_ids` above)
|
|
|
|
`multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
|
|
with indices selected in [0, ..., num_choices].
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Language modeling loss.
|
|
**mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Multiple choice classification loss.
|
|
**lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
**mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
|
|
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
|
|
**past**:
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
that contains pre-computed hidden-states (key and values in the attention blocks).
|
|
Can be used (see `past` input) to speed up sequential decoding.
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
>>> config = GPT2Config.from_pretrained('gpt2')
|
|
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
>>> model = GPT2DoubleHeadsModel(config)
|
|
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
|
|
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
|
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
|
|
>>> outputs = model(input_ids, mc_token_ids)
|
|
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(GPT2DoubleHeadsModel, self).__init__(config)
|
|
self.transformer = GPT2Model(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
self.multiple_choice_head = SequenceSummary(config)
|
|
|
|
self.apply(self.init_weights)
|
|
|
|
def tie_weights(self):
|
|
""" Make sure we are sharing the input and output embeddings.
|
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
|
"""
|
|
self._tie_or_clone_weights(self.lm_head,
|
|
self.transformer.wte)
|
|
|
|
def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
|
|
position_ids=None, past=None, head_mask=None):
|
|
transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
|
|
past=past, head_mask=head_mask)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
|
|
|
outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
|
|
if mc_labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
|
|
mc_labels.view(-1))
|
|
outputs = (loss,) + outputs
|
|
if lm_labels is not None:
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = lm_labels[..., 1:].contiguous()
|
|
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
|
shift_labels.view(-1))
|
|
outputs = (loss,) + outputs
|
|
|
|
return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)
|