transformers/hubconfs/transformer_xl_hubconf.py
2019-07-05 11:55:36 +02:00

131 lines
5.7 KiB
Python

from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_transformers.modeling_transfo_xl import (
TransfoXLModel,
TransfoXLLMHeadModel
)
# A lot of models share the same param doc. Use a decorator
# to save typing
transformer_xl_docstring = """
Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
- you don't need to specify positioning embeddings indices
- the tokens in the vocabulary have to be sorted to decreasing frequency.
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `transfo-xl-wt103`
- a path or url to a pretrained model archive containing:
. `transfo_xl_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
- a path or url to a pretrained model archive containing:
. `transfo_xl_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific TransformerXL class
"""
def _append_from_pretrained_docstring(docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + docstr
return fn
return docstring_decorator
def transformerXLTokenizer(*args, **kwargs):
"""
Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl
Args:
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
* transfo-xl-wt103
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> text = "Who was Jim Henson ?"
>>> tokenized_text = tokenizer.tokenize(tokenized_text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
"""
tokenizer = TransfoXLTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
@_append_from_pretrained_docstring(transformer_xl_docstring)
def transformerXLModel(*args, **kwargs):
"""
transformerXLModel is the basic Transformer XL model.
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLModel
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLModel', 'transfo-xl-wt103')
>>> model.eval()
# Predict hidden states features for each layer
# We can re-use the memory cells in a subsequent call to attend a longer context
>>> with torch.no_grad():
hidden_states_1, mems_1 = model(tokens_tensor_1)
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
"""
model = TransfoXLModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(transformer_xl_docstring)
def transformerXLLMHeadModel(*args, **kwargs):
"""
transformerXLModel is the basic Transformer XL model with the
tied (pre-trained) language modeling head on top.
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model.eval()
# Predict hidden states features for each layer
# We can re-use the memory cells in a subsequent call to attend a longer context
>>> with torch.no_grad():
predictions_1, mems_1 = model(tokens_tensor_1)
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
# Get the predicted last token
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
>>> assert predicted_token == 'who'
"""
model = TransfoXLLMHeadModel.from_pretrained(*args, **kwargs)
return model