mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-18 03:58:25 +06:00
169 lines
6.9 KiB
Python
169 lines
6.9 KiB
Python
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer
|
|
from pytorch_transformers.modeling_gpt2 import (
|
|
GPT2Model,
|
|
GPT2LMHeadModel,
|
|
GPT2DoubleHeadsModel
|
|
)
|
|
|
|
# A lot of models share the same param doc. Use a decorator
|
|
# to save typing
|
|
gpt2_docstring = """
|
|
Params:
|
|
pretrained_model_name_or_path: either:
|
|
- a str with the name of a pre-trained model to load selected in the list of:
|
|
. `gpt2`, `gpt2-medium`
|
|
- a path or url to a pretrained model archive containing:
|
|
. `gpt2_config.json` a configuration file for the model
|
|
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
|
|
- a path or url to a pretrained model archive containing:
|
|
. `gpt2_config.json` a configuration file for the model
|
|
. a TensorFlow checkpoint with trained weights
|
|
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
|
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
|
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
|
|
*inputs, **kwargs: additional input for the specific GPT-2 class
|
|
"""
|
|
|
|
|
|
def _append_from_pretrained_docstring(docstr):
|
|
def docstring_decorator(fn):
|
|
fn.__doc__ = fn.__doc__ + docstr
|
|
return fn
|
|
return docstring_decorator
|
|
|
|
|
|
def gpt2Tokenizer(*args, **kwargs):
|
|
"""
|
|
Instantiate a GPT-2 BPE tokenizer for OpenAI GPT-2 from a pre-trained/customized vocab file.
|
|
Peculiarities:
|
|
- Byte-level BPE
|
|
|
|
Args:
|
|
pretrained_model_name_or_path: Path to pretrained model archive
|
|
or one of pre-trained vocab configs below.
|
|
* gpt2
|
|
Keyword args:
|
|
special_tokens: Special tokens in vocabulary that are not pretrained ([SEP], [CLS]...)
|
|
Default: None
|
|
max_len: An artificial maximum length to truncate tokenized sequences to;
|
|
Effective maximum length is always the minimum of this
|
|
value (if specified) and the underlying BERT model's
|
|
sequence length.
|
|
Default: None
|
|
|
|
Example:
|
|
>>> import torch
|
|
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
|
|
|
|
>>> text = "Who was Jim Henson ?"
|
|
>>> indexed_tokens = tokenizer.encode(tokenized_text)
|
|
"""
|
|
tokenizer = GPT2Tokenizer.from_pretrained(*args, **kwargs)
|
|
return tokenizer
|
|
|
|
|
|
@_append_from_pretrained_docstring(gpt2_docstring)
|
|
def gpt2Model(*args, **kwargs):
|
|
"""
|
|
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
|
|
identical stacked masked self-attention blocks and pre-trained
|
|
on large scale dataset using language modeling signal.
|
|
|
|
Example:
|
|
# Load the tokenizer
|
|
>>> import torch
|
|
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
|
|
|
|
# Prepare tokenized input
|
|
>>> text_1 = "Who was Jim Henson ?"
|
|
>>> text_2 = "Jim Henson was a puppeteer"
|
|
>>> indexed_tokens_1 = tokenizer.encode(text_1)
|
|
>>> indexed_tokens_2 = tokenizer.encode(text_2)
|
|
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
|
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
|
|
|
# Load gpt2Model
|
|
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Model', 'gpt2')
|
|
>>> model.eval()
|
|
|
|
# Predict hidden states features for each layer
|
|
# past can be used to reuse precomputed hidden state in a subsequent predictions
|
|
>>> with torch.no_grad():
|
|
hidden_states_1, past = model(tokens_tensor_1)
|
|
hidden_states_2, past = model(tokens_tensor_2, past=past)
|
|
"""
|
|
model = GPT2Model.from_pretrained(*args, **kwargs)
|
|
return model
|
|
|
|
|
|
@_append_from_pretrained_docstring(gpt2_docstring)
|
|
def gpt2LMHeadModel(*args, **kwargs):
|
|
"""
|
|
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
|
|
tied (pre-trained) language modeling head on top.
|
|
|
|
Example:
|
|
# Load the tokenizer
|
|
>>> import torch
|
|
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
|
|
|
|
# Prepare tokenized input
|
|
>>> text_1 = "Who was Jim Henson ?"
|
|
>>> text_2 = "Jim Henson was a puppeteer"
|
|
>>> indexed_tokens_1 = tokenizer.encode(text_1)
|
|
>>> indexed_tokens_2 = tokenizer.encode(text_2)
|
|
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
|
|
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
|
|
|
|
# Load gpt2LMHeadModel
|
|
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2LMHeadModel', 'gpt2')
|
|
>>> model.eval()
|
|
|
|
# Predict hidden states features for each layer
|
|
# past can be used to reuse precomputed hidden state in a subsequent predictions
|
|
>>> with torch.no_grad():
|
|
predictions_1, past = model(tokens_tensor_1)
|
|
predictions_2, past = model(tokens_tensor_2, past=past)
|
|
|
|
# Get the predicted last token
|
|
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
|
|
>>> predicted_token = tokenizer.decode([predicted_index])
|
|
>>> assert predicted_token == ' who'
|
|
"""
|
|
model = GPT2LMHeadModel.from_pretrained(*args, **kwargs)
|
|
return model
|
|
|
|
|
|
@_append_from_pretrained_docstring(gpt2_docstring)
|
|
def gpt2DoubleHeadsModel(*args, **kwargs):
|
|
"""
|
|
gpt2DoubleHeadsModel is the OpenAI GPT-2 Transformer model with the
|
|
tied (pre-trained) language modeling head and a multiple choice
|
|
classification head (only initialized, not pre-trained).
|
|
|
|
Example:
|
|
# Load the tokenizer
|
|
>>> import torch
|
|
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
|
|
|
|
# Prepare tokenized input
|
|
>>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
|
|
>>> text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
|
|
>>> tokenized_text1 = tokenizer.tokenize(text1)
|
|
>>> tokenized_text2 = tokenizer.tokenize(text2)
|
|
>>> indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
|
|
>>> indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
|
|
>>> tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
|
|
>>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
|
|
|
|
# Load gpt2DoubleHeadsModel
|
|
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2DoubleHeadsModel', 'gpt2')
|
|
>>> model.eval()
|
|
|
|
# Predict hidden states features for each layer
|
|
>>> with torch.no_grad():
|
|
lm_logits, multiple_choice_logits, presents = model(tokens_tensor, mc_token_ids)
|
|
"""
|
|
model = GPT2DoubleHeadsModel.from_pretrained(*args, **kwargs)
|
|
return model
|