transformers/tests/pipelines/test_pipelines_image_to_text.py
Younes Belkada 44b5506d29
[Llava] Add Llava to transformers (#27662)
* add model like

* logits match

* minor fixes

* fixes

* up

* up

* add todo

* llava processor

* keep the processor simple

* add conversion script

* fixup

* fix copies

* up

* add to index

* fix config + logits

* fix

* refactor

* more refactor

* more refactor

* fix copies

* add authors

* v1 tests

* add `LlavaProcessor` in init

* remove unneeded import

* up

* up

* docs

* up

* fix CI

* fix CI

* add attention  mask in test

* make fixup

* remove the vision model

* that' s the dirty way to do it

* nits

* nits

* updates

* add more tests

* add input tests

* fixup

* more styling

* nits

* updates amd cleanup

* fixup the generation expected results

* fix the testing script

* some cleanup and simplification which does not work yet but almost there!

* make correct dispatch operations

* vectorize works for batch of images and text

* last todos

* nits

* update test and modeling code

* remove useless function for now

* fix few issues

* fix generation

* some nits

* add bakllava

* nits

* remove duplicated code

* finis merge

* cleanup

* missed this line

* fill the todos

* add left padding offset

* add left and rignt padding logic

* bool to properly index

* make sure

* more cleanups

* batch is fixed 😉

* add correct device for tensor creation

* fix some dtype missmatch

* ruff

* update conversion script

* Update src/transformers/__init__.py

* fa 2 support + fix conversion script

* more

* correct reshaping

* fix test dict

* fix copies by ignoring

* fix nit

* skip clip vision model

* fixup

* fixup

* LlavaForVisionText2Text -> LlavaForCausalLM

* update

* fix

* raise correct errors

* fix

* docs

* nuke for now

* nits here and there

* fixup

* fix remaining tests

* update LlavaForConditionalGeneration instead of CausalLM

* fixups

* pipeline support

* slow and piepline tests

* supports batch

* nits

* cleanup

* fix first integration tests

* add pad token where needed

* correct etsts

* fixups

* update pipeline testr

* fix quality

* nits

* revert unneeded change

* nit

* use BatchFeature

* from ...feature_extraction_utils import BatchFeature

* nits

* nits

* properly update

* more f*** nits

* fix copies

* comment

* keep slow test slow

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add piepline example

* add pixel values in docstrign

* update pr doctest

* fix

* fix slow tests

* remove hack

* fixup

* small note

* forward contrib credits from PR25789

* forward contrib credits from original implementation and work

* add arthur

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* update docstring

* nit

* move to not doctested because of timeout issues

* fixup

* add description

* more

* fix-copies

* fix docs

* add beam search

* add more comments

* add typehints on processor

* add speedup plot

* update slow tests and docs

* push test

* push batched test

* fix batched generation with different number of images

* remove benchmark due to a bug

* fix test

* fix copies

* add gcolab demo

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-07 09:30:47 +01:00

276 lines
9.9 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import requests
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
is_torch_greater_or_equal_than_1_11 = False
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}],
],
)
@require_tf
def test_small_model_tf(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
outputs = pipe(image, max_new_tokens=1)
self.assertEqual(
outputs,
[{"generated_text": "growth"}],
)
@require_torch
def test_small_model_pt(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
@require_torch
def test_small_model_pt_conditional(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe(image, prompt=prompt)
self.assertTrue(outputs[0]["generated_text"].startswith(prompt))
@slow
@require_torch
def test_large_model_pt(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])
@slow
@require_torch
def test_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])
@slow
@require_torch
def test_conditional_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "a photography of"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "a photo of a"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`."
)
@slow
@require_torch
def test_conditional_generation_pt_pix2struct(self):
pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "ash cloud"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_tf
def test_large_model_tf(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_conditional_generation_llava(self):
pipe = pipeline("image-to-text", model="llava-hf/bakLlava-v1-hf")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = (
"<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT:"
)
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
self.assertEqual(
outputs,
[
{
"generated_text": "<image> \nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT: Lava"
}
],
)