mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-17 03:28:22 +06:00

* add model like
* logits match
* minor fixes
* fixes
* up
* up
* add todo
* llava processor
* keep the processor simple
* add conversion script
* fixup
* fix copies
* up
* add to index
* fix config + logits
* fix
* refactor
* more refactor
* more refactor
* fix copies
* add authors
* v1 tests
* add `LlavaProcessor` in init
* remove unneeded import
* up
* up
* docs
* up
* fix CI
* fix CI
* add attention mask in test
* make fixup
* remove the vision model
* that' s the dirty way to do it
* nits
* nits
* updates
* add more tests
* add input tests
* fixup
* more styling
* nits
* updates amd cleanup
* fixup the generation expected results
* fix the testing script
* some cleanup and simplification which does not work yet but almost there!
* make correct dispatch operations
* vectorize works for batch of images and text
* last todos
* nits
* update test and modeling code
* remove useless function for now
* fix few issues
* fix generation
* some nits
* add bakllava
* nits
* remove duplicated code
* finis merge
* cleanup
* missed this line
* fill the todos
* add left padding offset
* add left and rignt padding logic
* bool to properly index
* make sure
* more cleanups
* batch is fixed 😉
* add correct device for tensor creation
* fix some dtype missmatch
* ruff
* update conversion script
* Update src/transformers/__init__.py
* fa 2 support + fix conversion script
* more
* correct reshaping
* fix test dict
* fix copies by ignoring
* fix nit
* skip clip vision model
* fixup
* fixup
* LlavaForVisionText2Text -> LlavaForCausalLM
* update
* fix
* raise correct errors
* fix
* docs
* nuke for now
* nits here and there
* fixup
* fix remaining tests
* update LlavaForConditionalGeneration instead of CausalLM
* fixups
* pipeline support
* slow and piepline tests
* supports batch
* nits
* cleanup
* fix first integration tests
* add pad token where needed
* correct etsts
* fixups
* update pipeline testr
* fix quality
* nits
* revert unneeded change
* nit
* use BatchFeature
* from ...feature_extraction_utils import BatchFeature
* nits
* nits
* properly update
* more f*** nits
* fix copies
* comment
* keep slow test slow
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add piepline example
* add pixel values in docstrign
* update pr doctest
* fix
* fix slow tests
* remove hack
* fixup
* small note
* forward contrib credits from PR25789
* forward contrib credits from original implementation and work
* add arthur
* Update src/transformers/models/llava/processing_llava.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* update docstring
* nit
* move to not doctested because of timeout issues
* fixup
* add description
* more
* fix-copies
* fix docs
* add beam search
* add more comments
* add typehints on processor
* add speedup plot
* update slow tests and docs
* push test
* push batched test
* fix batched generation with different number of images
* remove benchmark due to a bug
* fix test
* fix copies
* add gcolab demo
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
276 lines
9.9 KiB
Python
276 lines
9.9 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
|
|
from transformers.pipelines import pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
is_torch_available,
|
|
require_tf,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
|
|
else:
|
|
is_torch_greater_or_equal_than_1_11 = False
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
class ImageToTextPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
|
|
examples = [
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
]
|
|
return pipe, examples
|
|
|
|
def run_pipeline_test(self, pipe, examples):
|
|
outputs = pipe(examples)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[{"generated_text": ANY(str)}],
|
|
[{"generated_text": ANY(str)}],
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
|
|
outputs = pipe(image)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
|
|
},
|
|
],
|
|
)
|
|
|
|
outputs = pipe([image, image])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{
|
|
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
|
|
}
|
|
],
|
|
[
|
|
{
|
|
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
|
|
}
|
|
],
|
|
],
|
|
)
|
|
|
|
outputs = pipe(image, max_new_tokens=1)
|
|
self.assertEqual(
|
|
outputs,
|
|
[{"generated_text": "growth"}],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
|
|
outputs = pipe(image)
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
|
|
},
|
|
],
|
|
)
|
|
|
|
outputs = pipe([image, image])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[
|
|
{
|
|
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
|
|
}
|
|
],
|
|
[
|
|
{
|
|
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
|
|
}
|
|
],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt_conditional(self):
|
|
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
prompt = "a photo of"
|
|
|
|
outputs = pipe(image, prompt=prompt)
|
|
self.assertTrue(outputs[0]["generated_text"].startswith(prompt))
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt(self):
|
|
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
|
|
outputs = pipe(image)
|
|
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
|
|
|
|
outputs = pipe([image, image])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
|
|
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
|
|
],
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_generation_pt_blip(self):
|
|
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
|
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
outputs = pipe(image)
|
|
self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_generation_pt_git(self):
|
|
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
|
|
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
outputs = pipe(image)
|
|
self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_conditional_generation_pt_blip(self):
|
|
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
prompt = "a photography of"
|
|
|
|
outputs = pipe(image, prompt=prompt)
|
|
self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])
|
|
|
|
with self.assertRaises(ValueError):
|
|
outputs = pipe([image, image], prompt=[prompt, prompt])
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_conditional_generation_pt_git(self):
|
|
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
prompt = "a photo of a"
|
|
|
|
outputs = pipe(image, prompt=prompt)
|
|
self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])
|
|
|
|
with self.assertRaises(ValueError):
|
|
outputs = pipe([image, image], prompt=[prompt, prompt])
|
|
|
|
@unittest.skipIf(
|
|
not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`."
|
|
)
|
|
@slow
|
|
@require_torch
|
|
def test_conditional_generation_pt_pix2struct(self):
|
|
pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
|
|
|
|
outputs = pipe(image, prompt=prompt)
|
|
self.assertEqual(outputs, [{"generated_text": "ash cloud"}])
|
|
|
|
with self.assertRaises(ValueError):
|
|
outputs = pipe([image, image], prompt=[prompt, prompt])
|
|
|
|
@slow
|
|
@require_tf
|
|
def test_large_model_tf(self):
|
|
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
|
|
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
|
|
|
|
outputs = pipe(image)
|
|
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
|
|
|
|
outputs = pipe([image, image])
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
|
|
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
|
|
],
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_conditional_generation_llava(self):
|
|
pipe = pipeline("image-to-text", model="llava-hf/bakLlava-v1-hf")
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
prompt = (
|
|
"<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT:"
|
|
)
|
|
|
|
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
|
self.assertEqual(
|
|
outputs,
|
|
[
|
|
{
|
|
"generated_text": "<image> \nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT: Lava"
|
|
}
|
|
],
|
|
)
|