mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
325 lines
13 KiB
Python
325 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
import unittest.mock as mock
|
|
from pathlib import Path
|
|
|
|
from huggingface_hub import HfFolder, delete_repo, set_access_token
|
|
from requests.exceptions import HTTPError
|
|
|
|
from transformers import AutoImageProcessor, ViTImageProcessor
|
|
from transformers.testing_utils import (
|
|
TOKEN,
|
|
USER,
|
|
check_json_file_has_correct_format,
|
|
get_tests_dir,
|
|
is_staging_test,
|
|
require_torch,
|
|
require_vision,
|
|
)
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent / "utils"))
|
|
|
|
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
|
|
|
|
|
|
if is_torch_available():
|
|
import numpy as np
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures")
|
|
|
|
|
|
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
|
|
One can specify whether the images are of the same resolution or not.
|
|
"""
|
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
|
|
|
image_inputs = []
|
|
for i in range(image_processor_tester.batch_size):
|
|
if equal_resolution:
|
|
width = height = image_processor_tester.max_resolution
|
|
else:
|
|
# To avoid getting image width/height 0
|
|
min_resolution = image_processor_tester.min_resolution
|
|
if getattr(image_processor_tester, "size_divisor", None):
|
|
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
|
|
min_resolution = max(image_processor_tester.size_divisor, min_resolution)
|
|
width, height = np.random.choice(np.arange(min_resolution, image_processor_tester.max_resolution), 2)
|
|
image_inputs.append(
|
|
np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8)
|
|
)
|
|
|
|
if not numpify and not torchify:
|
|
# PIL expects the channel dimension as last dimension
|
|
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
|
|
|
|
if torchify:
|
|
image_inputs = [torch.from_numpy(image) for image in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
|
|
def prepare_video(image_processor_tester, width=10, height=10, numpify=False, torchify=False):
|
|
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
|
|
|
|
video = []
|
|
for i in range(image_processor_tester.num_frames):
|
|
video.append(np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8))
|
|
|
|
if not numpify and not torchify:
|
|
# PIL expects the channel dimension as last dimension
|
|
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
|
|
|
|
if torchify:
|
|
video = [torch.from_numpy(frame) for frame in video]
|
|
|
|
return video
|
|
|
|
|
|
def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False):
|
|
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
|
|
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
|
|
|
|
One can specify whether the videos are of the same resolution or not.
|
|
"""
|
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
|
|
|
video_inputs = []
|
|
for i in range(image_processor_tester.batch_size):
|
|
if equal_resolution:
|
|
width = height = image_processor_tester.max_resolution
|
|
else:
|
|
width, height = np.random.choice(
|
|
np.arange(image_processor_tester.min_resolution, image_processor_tester.max_resolution), 2
|
|
)
|
|
video = prepare_video(
|
|
image_processor_tester=image_processor_tester,
|
|
width=width,
|
|
height=height,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
video_inputs.append(video)
|
|
|
|
return video_inputs
|
|
|
|
|
|
class ImageProcessingSavingTestMixin:
|
|
test_cast_dtype = None
|
|
|
|
def test_image_processor_to_json_string(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
obj = json.loads(image_processor.to_json_string())
|
|
for key, value in self.image_processor_dict.items():
|
|
self.assertEqual(obj[key], value)
|
|
|
|
def test_image_processor_to_json_file(self):
|
|
image_processor_first = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
json_file_path = os.path.join(tmpdirname, "image_processor.json")
|
|
image_processor_first.to_json_file(json_file_path)
|
|
image_processor_second = self.image_processing_class.from_json_file(json_file_path)
|
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
|
|
|
|
def test_image_processor_from_and_save_pretrained(self):
|
|
image_processor_first = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
|
|
check_json_file_has_correct_format(saved_file)
|
|
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
|
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
|
|
|
|
def test_init_without_params(self):
|
|
image_processor = self.image_processing_class()
|
|
self.assertIsNotNone(image_processor)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_cast_dtype_device(self):
|
|
if self.test_cast_dtype is not None:
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
|
|
# create random PyTorch tensors
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt")
|
|
# for layoutLM compatiblity
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
|
|
|
|
with self.assertRaises(TypeError):
|
|
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
|
|
|
|
# Try with text + image feature
|
|
encoding = image_processor(image_inputs, return_tensors="pt")
|
|
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
|
|
encoding = encoding.to(torch.float16)
|
|
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
|
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
|
|
self.assertEqual(encoding.input_ids.dtype, torch.long)
|
|
|
|
|
|
class ImageProcessorUtilTester(unittest.TestCase):
|
|
def test_cached_files_are_used_when_internet_is_down(self):
|
|
# A mock response for an HTTP head request to emulate server down
|
|
response_mock = mock.Mock()
|
|
response_mock.status_code = 500
|
|
response_mock.headers = {}
|
|
response_mock.raise_for_status.side_effect = HTTPError
|
|
response_mock.json.return_value = {}
|
|
|
|
# Download this model to make sure it's in the cache.
|
|
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
|
|
# Under the mock environment we get a 500 error when trying to reach the model.
|
|
with mock.patch("requests.request", return_value=response_mock) as mock_head:
|
|
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit")
|
|
# This check we did call the fake head request
|
|
mock_head.assert_called()
|
|
|
|
def test_legacy_load_from_url(self):
|
|
# This test is for deprecated behavior and can be removed in v5
|
|
_ = ViTImageProcessor.from_pretrained(
|
|
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json"
|
|
)
|
|
|
|
|
|
@is_staging_test
|
|
class ImageProcessorPushToHubTester(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._token = TOKEN
|
|
set_access_token(TOKEN)
|
|
HfFolder.save_token(TOKEN)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
try:
|
|
delete_repo(token=cls._token, repo_id="test-image-processor")
|
|
except HTTPError:
|
|
pass
|
|
|
|
try:
|
|
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org")
|
|
except HTTPError:
|
|
pass
|
|
|
|
try:
|
|
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor")
|
|
except HTTPError:
|
|
pass
|
|
|
|
def test_push_to_hub(self):
|
|
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
|
|
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token)
|
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
|
|
for k, v in image_processor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_image_processor, k))
|
|
|
|
# Reset repo
|
|
delete_repo(token=self._token, repo_id="test-image-processor")
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
image_processor.save_pretrained(
|
|
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token
|
|
)
|
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor")
|
|
for k, v in image_processor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_image_processor, k))
|
|
|
|
def test_push_to_hub_in_organization(self):
|
|
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
|
|
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token)
|
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor")
|
|
for k, v in image_processor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_image_processor, k))
|
|
|
|
# Reset repo
|
|
delete_repo(token=self._token, repo_id="valid_org/test-image-processor")
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
image_processor.save_pretrained(
|
|
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token
|
|
)
|
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org")
|
|
for k, v in image_processor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_image_processor, k))
|
|
|
|
def test_push_to_hub_dynamic_image_processor(self):
|
|
CustomImageProcessor.register_for_auto_class()
|
|
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR)
|
|
|
|
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token)
|
|
|
|
# This has added the proper auto_map field to the config
|
|
self.assertDictEqual(
|
|
image_processor.auto_map,
|
|
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"},
|
|
)
|
|
|
|
new_image_processor = AutoImageProcessor.from_pretrained(
|
|
f"{USER}/test-dynamic-image-processor", trust_remote_code=True
|
|
)
|
|
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module
|
|
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor")
|
|
|
|
def test_image_processor_from_pretrained_subfolder(self):
|
|
with self.assertRaises(OSError):
|
|
# config is in subfolder, the following should not work without specifying the subfolder
|
|
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants")
|
|
|
|
config = AutoImageProcessor.from_pretrained(
|
|
"hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor"
|
|
)
|
|
|
|
self.assertIsNotNone(config)
|