mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* add readme skeleton * update readme * add initialization script * add deduplication script * add codeparrot training script * add code generation evaluation * add validation loss script * add requirements * update readme * tweak readme * make style * add highlights to readme * add CLIs to scripts * add tokenizer training script * add docstring to constant length dataset * fix defaults in arguments * update readme with cli * move image to hub * tweaks of readme * fix cli commands * add author * explain env variables * fix formatting * Update examples/research_projects/codeparrot/README.md Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * Apply suggestions from code review Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * replace generic with gpt2 tokenizer Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
176 lines
7.8 KiB
Python
176 lines
7.8 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments:
|
|
"""
|
|
Configuration for training model.
|
|
"""
|
|
|
|
model_ckpt: Optional[str] = field(
|
|
default="lvwerra/codeparrot",
|
|
metadata={"help": "Model name or path of model to be trained."},
|
|
)
|
|
save_dir: Optional[str] = field(
|
|
default="./",
|
|
metadata={"help": "Save dir where model repo is cloned and models updates are saved to."},
|
|
)
|
|
dataset_name_train: Optional[str] = field(
|
|
default="lvwerra/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."}
|
|
)
|
|
dataset_name_valid: Optional[str] = field(
|
|
default="lvwerra/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."}
|
|
)
|
|
train_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for training."})
|
|
valid_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for evaluation."})
|
|
weight_decay: Optional[float] = field(default=0.1, metadata={"help": "Value of weight decay."})
|
|
shuffle_buffer: Optional[int] = field(
|
|
default=1000, metadata={"help": "Size of buffer used to shuffle streaming dataset."}
|
|
)
|
|
learning_rate: Optional[float] = field(default=2e-4, metadata={"help": "Learning rate fo training."})
|
|
lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "Learning rate."})
|
|
num_warmup_steps: Optional[int] = field(
|
|
default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."}
|
|
)
|
|
gradient_accumulation_steps: Optional[int] = field(
|
|
default=16, metadata={"help": "Number of gradient accumulation steps."}
|
|
)
|
|
gradient_checkpointing: Optional[bool] = field(
|
|
default=True, metadata={"help": "Use gradient checkpointing to reduce memory footprint."}
|
|
)
|
|
max_train_steps: Optional[int] = field(default=50_000, metadata={"help": "Maximum number of training steps."})
|
|
max_eval_steps: Optional[int] = field(
|
|
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
|
|
)
|
|
seq_length: Optional[int] = field(default=1024, metadata={"help": "Sequence lengths used for training."})
|
|
seed: Optional[int] = field(default=1, metadata={"help": "Training seed."})
|
|
save_checkpoint_steps: Optional[int] = field(
|
|
default=1024,
|
|
metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class EvaluationArguments:
|
|
"""
|
|
Configuration for evaluating model.
|
|
"""
|
|
|
|
model_ckpt: Optional[str] = field(
|
|
default="lvwerra/codeparrot",
|
|
metadata={"help": "Model name or path of model to be evaluated."},
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="lvwerra/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."}
|
|
)
|
|
batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size used for evaluation."})
|
|
max_eval_steps: Optional[int] = field(
|
|
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
|
|
)
|
|
seq_length: Optional[int] = field(default=1024, metadata={"help": "Length of sequences to be evaluated."})
|
|
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."})
|
|
|
|
|
|
@dataclass
|
|
class HumanEvalArguments:
|
|
"""
|
|
Configuration for running evaluation on HumanEval dataset.
|
|
"""
|
|
|
|
model_ckpt: Optional[str] = field(
|
|
default="lvwerra/codeparrot",
|
|
metadata={"help": "Model name or path of model to be evaluated."},
|
|
)
|
|
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."})
|
|
do_sample: Optional[bool] = field(
|
|
default=True, metadata={"help": "Sample from the language model's output distribution."}
|
|
)
|
|
temperature: Optional[float] = field(default=0.2, metadata={"help": "Sampling temperature used for generation."})
|
|
max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of newly generated tokens."})
|
|
top_k: Optional[int] = field(default=0, metadata={"help": "Top-k parameter used for generation."})
|
|
top_p: Optional[float] = field(default=0.95, metadata={"help": "Top-p parameter used for nucleus sampling."})
|
|
batch_size: Optional[int] = field(default=10, metadata={"help": "Number of generations to run in parallel."})
|
|
n_samples: Optional[int] = field(
|
|
default=200, metadata={"help": "Number of completions to generate for each sample."}
|
|
)
|
|
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."})
|
|
output_file: Optional[str] = field(
|
|
default="eval_results.json", metadata={"help": "Random seed used for evaluation."}
|
|
)
|
|
HF_ALLOW_CODE_EVAL: Optional[str] = field(
|
|
default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class PreprocessingArguments:
|
|
"""
|
|
Configuration for preprocessing data.
|
|
"""
|
|
|
|
num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."
|
|
},
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="codeparrot", metadata={"help": "Folder or name of dataset to process."}
|
|
)
|
|
output_dir: Optional[str] = field(
|
|
default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."}
|
|
)
|
|
samples_per_file: Optional[int] = field(
|
|
default=100_000, metadata={"help": "Number of files to save per JSON output file."}
|
|
)
|
|
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."})
|
|
line_max: Optional[float] = field(
|
|
default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."}
|
|
)
|
|
line_mean: Optional[float] = field(
|
|
default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."}
|
|
)
|
|
alpha_frac: Optional[float] = field(
|
|
default=0.25, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class TokenizerTrainingArguments:
|
|
"""
|
|
Configuration for tokenizer training.
|
|
"""
|
|
|
|
base_tokenizer: Optional[str] = field(
|
|
default="gpt2",
|
|
metadata={"help": "Base tokenizer to build new tokenizer from."},
|
|
)
|
|
dataset_name: Optional[str] = field(
|
|
default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."}
|
|
)
|
|
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."})
|
|
vocab_size: Optional[int] = field(default=200000, metadata={"help": "Number of examples to train tokenizer on."})
|
|
n_examples: Optional[int] = field(
|
|
default=32768, metadata={"help": "Number of examples to train the tokenizer on."}
|
|
)
|
|
tokenizer_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of new tokenizer."})
|
|
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
|
|
|
|
|
|
@dataclass
|
|
class InitializationArguments:
|
|
"""
|
|
Configuration for initializing new model.
|
|
"""
|
|
|
|
config_name: Optional[str] = field(
|
|
default="gpt2-large",
|
|
metadata={"help": "Configuration to use for model initialization."},
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default="lvwerra/codeparrot", metadata={"help": "Tokenizer attached to model."}
|
|
)
|
|
model_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of the created model."})
|
|
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
|