transformers/docs/source/converting_tensorflow_models.rst
2019-07-16 13:56:47 +02:00

87 lines
4.1 KiB
ReStructuredText

Converting Tensorflow Checkpoints
================================================
A command-line interface is provided to convert a TensorFlow checkpoint in a PyTorch dump of the ``BertForPreTraining`` class (for BERT) or NumPy checkpoint in a PyTorch dump of the ``OpenAIGPTModel`` class (for OpenAI GPT).
BERT
^^^^
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google <https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the `convert_tf_checkpoint_to_pytorch.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py>`_ script.
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can be imported using ``torch.load()`` (see examples in `run_bert_extract_features.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_extract_features.py>`_\ , `run_bert_classifier.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_classifier.py>`_ and `run_bert_squad.py <https://github.com/huggingface/pytorch-pretrained-BERT/tree/master/examples/run_bert_squad.py>`_\ ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\ ``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install tensorflow``\ ). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:
.. code-block:: shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
pytorch_transformers bert \
$BERT_BASE_DIR/bert_model.ckpt \
$BERT_BASE_DIR/bert_config.json \
$BERT_BASE_DIR/pytorch_model.bin
You can download Google's pre-trained models for the conversion `here <https://github.com/google-research/bert#pre-trained-models>`__.
OpenAI GPT
^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\ )
.. code-block:: shell
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
pytorch_transformers gpt \
$OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
$PYTORCH_DUMP_OUTPUT \
[OPENAI_GPT_CONFIG]
Transformer-XL
^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here <https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ )
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
pytorch_transformers transfo_xl \
$TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
$PYTORCH_DUMP_OUTPUT \
[TRANSFO_XL_CONFIG]
GPT-2
^^^^^
Here is an example of the conversion process for a pre-trained OpenAI's GPT-2 model.
.. code-block:: shell
export GPT2_DIR=/path/to/gpt2/checkpoint
pytorch_transformers gpt2 \
$GPT2_DIR/model.ckpt \
$PYTORCH_DUMP_OUTPUT \
[GPT2_CONFIG]
XLNet
^^^^^
Here is an example of the conversion process for a pre-trained XLNet model, fine-tuned on STS-B using the TensorFlow script:
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
pytorch_transformers xlnet \
$TRANSFO_XL_CHECKPOINT_PATH \
$TRANSFO_XL_CONFIG_PATH \
$PYTORCH_DUMP_OUTPUT \
STS-B \