mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* smolvlm init * updates * fixing bugs * minimal run, no checks * minimal run, no checks * passing first check + adding url support * updating video dataloading logic * fixing image logic * trying modular, but fails * modular is working, changing processor to match PR comments and general transformers logic * fixing kwargs * offloading video loading logic to image_util * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * fixing circleci code formatting errors * update * add idefics3-based tests * add keyword to all * add PreTrainedModel * updateing video loading logic * working inference * updates for PR comments * updates for PR comments * moving SmolVLMPretrainedModel higher to fix import error * CI test pass * CI test pass * removing lambda * CI test pass * CI test pass * CI test pass * CI test pass * CI test pass * CI test pass * processor tests * add example in docs * typo * fix copies * skip compile tests - sdpa for VisionTransformer * fix init * raise import error for num2words * update doc for FA2 * more doc fix * CI * updates for PR comments * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Joshua Lochner <admin@xenova.com> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * fixing processor -- tokenizer not defined properly, (gpt2 tokenizer), and does not have the attributes of fake image token, etc * adding smolvlm to VQA models * removing vqa auto class * Update src/transformers/models/smolvlm/processing_smolvlm.py Co-authored-by: Joshua Lochner <admin@xenova.com> * removing smolvlmvisiontransformer from index.md * my bad, video processing had typos * fixing docs * renaming params in SmolVLMModel.inputs_merger * removing un-needed dtype/device in model forward * ruff for CI * update docs * Update docs/source/en/model_doc/smolvlm.md Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * return cache position * return cache position * return cache also in modular * needed to run modular again * fix training tests * push vectorized inputs merger * format * format * reduce number of mappings * addressing PR comments * happy CI, happy me :) * skip non-nested images * adjust integration test for smaller GPUs * format * fix kwargs in chat template apply * skip this for now --------- Co-authored-by: raushan <raushan@huggingface.co> Co-authored-by: Pablo <pablo.montalvo.leroux@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Joshua Lochner <admin@xenova.com>
656 lines
29 KiB
Python
656 lines
29 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
from io import BytesIO
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from transformers import SmolVLMProcessor
|
|
from transformers.models.auto.processing_auto import AutoProcessor
|
|
from transformers.testing_utils import require_av, require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class SmolVLMProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = SmolVLMProcessor
|
|
videos_input_name = "pixel_values"
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
processor = SmolVLMProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct", image_seq_len=2)
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
cls.image1 = Image.open(
|
|
BytesIO(
|
|
requests.get(
|
|
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
|
).content
|
|
)
|
|
)
|
|
cls.image2 = Image.open(
|
|
BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content)
|
|
)
|
|
cls.image3 = Image.open(
|
|
BytesIO(
|
|
requests.get(
|
|
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
|
|
).content
|
|
)
|
|
)
|
|
cls.bos_token = processor.tokenizer.bos_token
|
|
cls.image_token = processor.image_token
|
|
cls.fake_image_token = processor.fake_image_token
|
|
cls.global_img_token = processor.global_image_token
|
|
|
|
cls.bos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.bos_token)
|
|
cls.image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.image_token)
|
|
cls.fake_image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.fake_image_token)
|
|
cls.global_img_tokens_id = processor.tokenizer(cls.global_img_token, add_special_tokens=False)["input_ids"]
|
|
cls.padding_token_id = processor.tokenizer.pad_token_id
|
|
cls.image_seq_len = processor.image_seq_len
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def get_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def prepare_processor_dict(self):
|
|
return {
|
|
"image_seq_len": self.image_seq_len,
|
|
"chat_template": "<|im_start|>{% for message in messages %}{{message['role'] | capitalize}}{% if message['content'][0]['type'] == 'image' %}{{':'}}{% else %}{{': '}}{% endif %}{% for line in message['content'] %}{% if line['type'] == 'text' %}{{line['text']}}{% elif line['type'] == 'image' %}{{ '<image>' }}{% endif %}{% endfor %}<end_of_utterance>\n{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
|
|
}
|
|
|
|
def get_split_image_expected_tokens(self, processor, image_rows, image_cols):
|
|
text_split_images = []
|
|
for n_h in range(image_rows):
|
|
for n_w in range(image_cols):
|
|
text_split_images += (
|
|
[self.fake_image_token_id]
|
|
+ processor.tokenizer(f"<row_{n_h + 1}_col_{n_w + 1}>", add_special_tokens=False)["input_ids"]
|
|
+ [self.image_token_id] * self.image_seq_len
|
|
)
|
|
text_split_images += processor.tokenizer("\n", add_special_tokens=False)["input_ids"]
|
|
text_split_images = text_split_images[:-1] # remove last newline
|
|
# add double newline, as it gets its own token
|
|
text_split_images += processor.tokenizer("\n\n", add_special_tokens=False)["input_ids"]
|
|
text_split_images += (
|
|
[self.fake_image_token_id]
|
|
+ self.global_img_tokens_id
|
|
+ [self.image_token_id] * self.image_seq_len
|
|
+ [self.fake_image_token_id]
|
|
)
|
|
return text_split_images
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.tmpdirname)
|
|
|
|
def test_process_interleaved_images_prompts_no_image_splitting(self):
|
|
processor_components = self.prepare_components()
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", padding_side="left")
|
|
processor_components["image_processor"] = self.get_component("image_processor", do_image_splitting=False)
|
|
processor_kwargs = self.prepare_processor_dict()
|
|
|
|
processor = self.processor_class(**processor_components, **processor_kwargs)
|
|
|
|
# Test that a single image is processed correctly
|
|
inputs = processor(images=self.image1)
|
|
image1_expected_size = (512, 512)
|
|
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 1, 3, *image1_expected_size))
|
|
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 1, *image1_expected_size))
|
|
# fmt: on
|
|
|
|
# Test a single sample with image and text
|
|
image_str = "<image>"
|
|
text_str = "In this image, we see"
|
|
text = image_str + text_str
|
|
inputs = processor(text=text, images=self.image1)
|
|
|
|
# fmt: off
|
|
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
|
|
expected_input_ids = [[self.fake_image_token_id] + self.global_img_tokens_id + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence["input_ids"]]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
|
|
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 1, 3, *image1_expected_size))
|
|
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 1, *image1_expected_size))
|
|
# fmt: on
|
|
|
|
# Test that batch is correctly processed
|
|
image_str = "<image>"
|
|
text_str_1 = "In this image, we see"
|
|
text_str_2 = "In this image, we see"
|
|
|
|
text = [
|
|
image_str + text_str_1,
|
|
image_str + image_str + text_str_2,
|
|
]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
|
|
inputs = processor(text=text, images=images, padding=True)
|
|
|
|
# fmt: off
|
|
tokenized_sentence_1 = processor.tokenizer(text_str_1, add_special_tokens=False)
|
|
tokenized_sentence_2 = processor.tokenizer(text_str_2, add_special_tokens=False)
|
|
image_tokens = [self.fake_image_token_id] + self.global_img_tokens_id + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id]
|
|
expected_input_ids_1 = image_tokens + tokenized_sentence_1["input_ids"]
|
|
expected_input_ids_2 = 2 * image_tokens + tokenized_sentence_2["input_ids"]
|
|
# Pad the first input to match the second input
|
|
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
|
|
padded_expected_input_ids_1 = [self.padding_token_id] * pad_len + expected_input_ids_1
|
|
|
|
self.assertEqual(
|
|
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
|
|
)
|
|
self.assertEqual(
|
|
inputs["attention_mask"],
|
|
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
|
|
)
|
|
self.assertEqual(np.array(inputs['pixel_values']).shape, (2, 2, 3, 512, 512))
|
|
self.assertEqual(np.array(inputs['pixel_attention_mask']).shape, (2, 2, 512, 512))
|
|
# fmt: on
|
|
|
|
def test_process_interleaved_images_prompts_image_splitting(self):
|
|
processor_components = self.prepare_components()
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", padding_side="left")
|
|
processor_components["image_processor"] = self.get_component("image_processor", do_image_splitting=True)
|
|
processor_kwargs = self.prepare_processor_dict()
|
|
|
|
processor = self.processor_class(**processor_components, **processor_kwargs)
|
|
|
|
# Test that a single image is processed correctly
|
|
inputs = processor(images=self.image1)
|
|
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 13, 3, 512, 512))
|
|
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 13, 512, 512))
|
|
# fmt: on
|
|
self.maxDiff = None
|
|
|
|
# Test a single sample with image and text
|
|
image_str = "<image>"
|
|
text_str = "In this image, we see"
|
|
text = image_str + text_str
|
|
inputs = processor(text=text, images=self.image1)
|
|
|
|
# fmt: off
|
|
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
|
|
split_image1_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
|
|
expected_input_ids_1 = [split_image1_tokens + tokenized_sentence["input_ids"]]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids_1)
|
|
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids_1[0])])
|
|
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 13, 3, 512, 512))
|
|
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 13, 512, 512))
|
|
# fmt: on
|
|
|
|
# Test that batch is correctly processed
|
|
image_str = "<image>"
|
|
text_str_1 = "In this image, we see"
|
|
text_str_2 = "bla, bla"
|
|
|
|
text = [
|
|
image_str + text_str_1,
|
|
text_str_2 + image_str + image_str,
|
|
]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
|
|
inputs = processor(text=text, images=images, padding=True)
|
|
|
|
# fmt: off
|
|
tokenized_sentence_1 = processor.tokenizer(text_str_1, add_special_tokens=False)
|
|
tokenized_sentence_2 = processor.tokenizer(text_str_2, add_special_tokens=False)
|
|
|
|
split_image1_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
|
|
split_image2_tokens = self.get_split_image_expected_tokens(processor, 4, 4)
|
|
split_image3_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
|
|
expected_input_ids_1 = split_image1_tokens + tokenized_sentence_1["input_ids"]
|
|
expected_input_ids_2 = tokenized_sentence_2["input_ids"] + split_image2_tokens + split_image3_tokens
|
|
# Pad the first input to match the second input
|
|
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
|
|
padded_expected_input_ids_1 = [self.padding_token_id] * pad_len + expected_input_ids_1
|
|
|
|
self.assertEqual(
|
|
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
|
|
)
|
|
self.assertEqual(
|
|
inputs["attention_mask"],
|
|
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
|
|
)
|
|
self.assertEqual(np.array(inputs['pixel_values']).shape, (2, 30, 3, 512, 512))
|
|
self.assertEqual(np.array(inputs['pixel_attention_mask']).shape, (2, 30, 512, 512))
|
|
# fmt: on
|
|
|
|
def test_add_special_tokens_processor(self):
|
|
processor = self.get_processor()
|
|
|
|
image_str = "<image>"
|
|
text_str = "In this image, we see"
|
|
text = text_str + image_str
|
|
|
|
# fmt: off
|
|
inputs = processor(text=text, images=self.image1, add_special_tokens=False)
|
|
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
|
|
split_image1_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
|
|
expected_input_ids = [tokenized_sentence["input_ids"] + split_image1_tokens]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
|
|
inputs = processor(text=text, images=self.image1)
|
|
expected_input_ids = [tokenized_sentence["input_ids"] + split_image1_tokens]
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
# fmt: on
|
|
|
|
@unittest.skip(reason="from @molbap @zucchini-nlp, passing non-nested images is error-prone and not recommended")
|
|
def test_non_nested_images_with_batched_text(self):
|
|
processor = self.get_processor()
|
|
processor.image_processor.do_image_splitting = False
|
|
|
|
image_str = "<image>"
|
|
text_str_1 = "In this image, we see"
|
|
text_str_2 = "In this image, we see"
|
|
|
|
text = [
|
|
image_str + text_str_1,
|
|
image_str + image_str + text_str_2,
|
|
]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
|
|
inputs = processor(text=text, images=images, padding=True)
|
|
|
|
self.assertEqual(np.array(inputs["pixel_values"]).shape, (2, 2, 3, 512, 512))
|
|
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (2, 2, 512, 512))
|
|
|
|
# Copied from tests.models.idefics2.test_processor_idefics2.Idefics2ProcessorTest.test_process_interleaved_images_prompts_image_error
|
|
def test_process_interleaved_images_prompts_image_error(self):
|
|
processor = self.get_processor()
|
|
|
|
text = [
|
|
"This is a test sentence.",
|
|
"In this other sentence we try some good things",
|
|
]
|
|
images = [[self.image1], [self.image2]]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [[self.image1], []]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
|
|
text = [
|
|
"This is a test sentence.<image>",
|
|
"In this other sentence we try some good things<image>",
|
|
]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [[], [self.image2]]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [self.image1, self.image2, self.image3]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [self.image1]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
|
|
text = [
|
|
"This is a test sentence.",
|
|
"In this other sentence we try some good things<image>",
|
|
]
|
|
images = [[self.image1], []]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [[], [self.image2]]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [self.image1, self.image2]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
images = [self.image1]
|
|
with self.assertRaises(ValueError):
|
|
processor(text=text, images=images, padding=True)
|
|
|
|
def test_apply_chat_template(self):
|
|
# Message contains content which a mix of lists with images and image urls and string
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What do these images show?"},
|
|
{"type": "image"},
|
|
{"type": "image"},
|
|
"What do these images show?",
|
|
],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.",
|
|
}
|
|
],
|
|
},
|
|
{"role": "user", "content": [{"type": "text", "text": "And who is that?"}]},
|
|
]
|
|
processor = self.get_processor()
|
|
# Make short sequence length to test that the fake tokens are added correctly
|
|
rendered = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
|
expected_rendered = (
|
|
"<|im_start|>User: What do these images show?<image><image><end_of_utterance>\n"
|
|
"Assistant: The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.<end_of_utterance>\n"
|
|
"User: And who is that?<end_of_utterance>\n"
|
|
"Assistant:"
|
|
)
|
|
self.assertEqual(rendered, expected_rendered)
|
|
|
|
@unittest.skip(reason="Broken from common. Fixing TODO @zucchini-nlp @molbap")
|
|
def test_chat_template_video_special_processing(self):
|
|
pass
|
|
|
|
@require_av
|
|
def test_chat_template_video(self):
|
|
# overriden because SmolVLM has special preprocessing for videos
|
|
processor = self.get_processor()
|
|
if processor.chat_template is None:
|
|
self.skipTest("Processor has no chat template")
|
|
|
|
messages = [
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "video",
|
|
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
|
},
|
|
{"type": "text", "text": "What is shown in this video?"},
|
|
],
|
|
},
|
|
]
|
|
]
|
|
|
|
num_frames = 3
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
num_frames=num_frames,
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
|
# SmolVLM doesn't sample `num_frames` exactly, by uses other sampling method
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), 10)
|
|
|
|
# Load with `video_fps` arg
|
|
video_fps = 1
|
|
out_dict_with_video = processor.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
video_fps=video_fps,
|
|
)
|
|
self.assertTrue(self.videos_input_name in out_dict_with_video)
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
|
|
# SmolVLM doesn't sample 1 frame per second exactly, by uses other sampling method
|
|
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), video_fps * 10)
|
|
|
|
# NOTE: the last assert checks are removed
|
|
# Loading video as a list of frames (i.e. images) is not supported in SmolVLM
|
|
|
|
# Override as SmolVLMProcessor needs image tokens in prompts
|
|
def prepare_text_inputs(self, batch_size: Optional[int] = None):
|
|
if batch_size is None:
|
|
return "lower newer <image>"
|
|
|
|
if batch_size < 1:
|
|
raise ValueError("batch_size must be greater than 0")
|
|
|
|
if batch_size == 1:
|
|
return ["lower newer <image>"]
|
|
return ["lower newer <image>", "<image> upper older longer string"] + ["<image> lower newer"] * (
|
|
batch_size - 2
|
|
)
|
|
|
|
# Override tests as inputs_ids padded dimension is the second one but not the last one
|
|
@require_vision
|
|
@require_torch
|
|
def test_kwargs_overrides_default_tokenizer_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=30)
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = self.prepare_text_inputs()
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, return_tensors="pt", max_length=30)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 30)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_structured_kwargs_nested(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = self.prepare_text_inputs()
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
common_kwargs={"return_tensors": "pt"},
|
|
images_kwargs={"max_image_size": {"longest_edge": 32}},
|
|
text_kwargs={"padding": "max_length", "max_length": 120, "truncation": "longest_first"},
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 32)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 120)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_structured_kwargs_nested_from_dict(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = self.prepare_text_inputs()
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"max_image_size": {"longest_edge": 32}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 120, "truncation": "longest_first"},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 32)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 120)
|
|
|
|
@require_vision
|
|
@require_torch
|
|
def test_tokenizer_defaults_preserved_by_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=30)
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = self.prepare_text_inputs()
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
|
|
self.assertEqual(len(inputs["input_ids"][0]), 30)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs_batched(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = self.prepare_text_inputs(batch_size=2)
|
|
image_input = self.prepare_image_inputs(batch_size=2)
|
|
image_input = [[image_input[0]], [image_input[1]]]
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
max_length=76,
|
|
truncation=True,
|
|
max_image_size={"longest_edge": 30},
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 3)
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 30)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = self.prepare_text_inputs()
|
|
image_input = self.prepare_image_inputs()
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
max_image_size={"longest_edge": 32},
|
|
padding="max_length",
|
|
max_length=120,
|
|
truncation="longest_first",
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 32)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 120)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_text_only_inference(self):
|
|
"""Test that the processor works correctly with text-only input."""
|
|
processor_components = self.prepare_components()
|
|
processor_components["tokenizer"] = self.get_component("tokenizer", padding_side="left")
|
|
processor_kwargs = self.prepare_processor_dict()
|
|
|
|
processor = self.processor_class(**processor_components, **processor_kwargs)
|
|
|
|
text = "This is a simple text without images."
|
|
inputs = processor(text=text)
|
|
|
|
tokenized_sentence = processor.tokenizer(text, add_special_tokens=False)
|
|
expected_input_ids = [tokenized_sentence["input_ids"]]
|
|
|
|
self.assertEqual(inputs["input_ids"], expected_input_ids)
|
|
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
|
|
self.assertTrue("pixel_values" not in inputs)
|
|
self.assertTrue("pixel_attention_mask" not in inputs)
|
|
|
|
# Test batch of texts without image tokens
|
|
texts = ["First text.", "Second piece of text."]
|
|
batch_inputs = processor(text=texts, padding=True)
|
|
|
|
tokenized_1 = processor.tokenizer(texts[0], add_special_tokens=False)
|
|
tokenized_2 = processor.tokenizer(texts[1], add_special_tokens=False)
|
|
|
|
expected_1 = tokenized_1["input_ids"]
|
|
expected_2 = tokenized_2["input_ids"]
|
|
|
|
# Pad the shorter sequence
|
|
pad_len = len(expected_2) - len(expected_1)
|
|
if pad_len > 0:
|
|
padded_expected_1 = [self.padding_token_id] * pad_len + expected_1
|
|
expected_attention_1 = [0] * pad_len + [1] * len(expected_1)
|
|
self.assertEqual(batch_inputs["input_ids"], [padded_expected_1, expected_2])
|
|
self.assertEqual(batch_inputs["attention_mask"], [expected_attention_1, [1] * len(expected_2)])
|
|
else:
|
|
pad_len = -pad_len
|
|
padded_expected_2 = [self.padding_token_id] * pad_len + expected_2
|
|
expected_attention_2 = [0] * pad_len + [1] * len(expected_2)
|
|
self.assertEqual(batch_inputs["input_ids"], [expected_1, padded_expected_2])
|
|
self.assertEqual(batch_inputs["attention_mask"], [[1] * len(expected_1), expected_attention_2])
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_missing_images_error(self):
|
|
"""Test that appropriate error is raised when images are referenced but not provided."""
|
|
processor = self.get_processor()
|
|
|
|
# Test single text with image token but no image
|
|
text = "Let me show you this image: <image> What do you think?"
|
|
with self.assertRaises(ValueError) as context:
|
|
processor(text=text)
|
|
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
|
|
|
|
# Test batch with image tokens but no images
|
|
texts = [
|
|
"First text with <image> token.",
|
|
"Second text <image> with token.",
|
|
]
|
|
with self.assertRaises(ValueError) as context:
|
|
processor(text=texts)
|
|
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
|
|
|
|
# Test with None as Images
|
|
with self.assertRaises(ValueError) as context:
|
|
processor(text=text, images=None)
|
|
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
|
|
|
|
with self.assertRaises(ValueError) as context:
|
|
processor(text=texts, images=None)
|
|
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
|