transformers/tests/test_modeling_tf_gpt2.py
Patrick von Platen 4134100363
Add generate() functionality to TF 2.0 (#3063)
* add first copy past test to tf 2 generate

* add tf top_k_top_p_filter fn

* add generate function for TF

* add generate function for TF

* implemented generate for all models expect transfoXL

* implemented generate for all models expect transfoXL

* implemented generate for all models expect transfoXL

* make style

* change permission of test file to correct ones

* delete ipdb

* delete ipdb

* fix bug and finish simple gpt2 integration test

* clean test file

* clean test file

* make style

* make style

* make style

* make style

* change import style

* change import style

* make style

* make style

* add decorators

* add decorators

* fix tf ctrl bug dim => axis in TF

* make style

* make style

* refactored test file

* refactored test file

* take out test_torch_tf_conversion if nothing is defined

* take out test_torch_tf_conversion if nothing is defined

* remove useless files

* remove useless files

* fix conflicts

* fix conflicts

* fix conflicts

* fix conflicts

* fix conflicts

* solve conflicts

* solve conflicts

* fix conflicts

* fix conflicts

* merge conflicts

* delete ipdb

* exposed top_k_top_p_filtering fns

* delete weirdly created w! file

* add comment to test tf common modeling

* fix conflicts

* fix conflicts

* make style

* merge conflicts

* make style

* change tf.tensor.shape to shape_list(tensor)
2020-03-03 09:42:15 -05:00

298 lines
11 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import GPT2Config, is_tf_available
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_tf, slow
if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_gpt2 import (
TFGPT2Model,
TFGPT2LMHeadModel,
TFGPT2DoubleHeadsModel,
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
)
@require_tf
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
class TFGPT2ModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_ids=self.eos_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
sequence_output = model(inputs)[0]
inputs = [input_ids, None, input_mask] # None is the input for 'past'
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size],
)
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2LMHeadModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_gpt2_double_head(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = TFGPT2DoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lm_logits, mc_logits = model(inputs)[:2]
result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
self.parent.assertListEqual(
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
def setUp(self):
self.model_tester = TFGPT2ModelTest.TFGPT2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_gpt2_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
def test_gpt2_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)
def test_gpt2_double_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in list(TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFGPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
def prepare_generation_special_tokens():
return {"bos_token_id": 50256, "eos_token_id": 50256}
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
special_tokens = prepare_generation_special_tokens()
@slow
def test_lm_generate_distilgpt2(self):
model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32) # The president
expected_output_ids = [
464,
1893,
286,
262,
1578,
1829,
11,
290,
262,
1893,
286,
262,
1578,
7526,
11,
423,
587,
287,
262,
2635,
] # The president of the United States, and the president of the United Kingdom, have been in the White
output_ids = model.generate(
input_ids,
do_sample=False,
bos_token_id=self.special_tokens["bos_token_id"],
eos_token_ids=self.special_tokens["eos_token_id"],
)
self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)