mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00

* Add T5 Encoder class for feature extraction * fix T5 encoder add_start_docstrings indent * update init with T5 encoder * update init with TFT5ModelEncoder * remove TFT5ModelEncoder * change T5ModelEncoder order in init * add T5ModelEncoder to transformers init * clean T5ModelEncoder * update init with TFT5ModelEncoder * add TFModelEncoder for Tensorflow * update init with TFT5ModelEncoder * Update src/transformers/models/t5/modeling_t5.py change output from Seq2SeqModelOutput to BaseModelOutput Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * remove encoder_outputs 1. remove encoder_outputs from the function call. 2. remove the encoder_outputs If statement. 3. remove isinstance from return_dict. * Authorize missing decoder keys * remove unnecessary input parameters remove pask_key_values and use_cache * remove use_cache remove use_cache from the forward method * add doctoring for T5 encoder add doctoring for T5 encoder with T5_ENCODER_INPUTS_DOCSTRING * change return_dict to dot access * add T5_ENCODER_INPUTS_DOCSTRING for TF T5 * change TFT5Encoder output type to BaseModelOutput * remove unnecessary parameters for TFT5Encoder * remove unnecessary if statement * add import BaseModelOutput * fix BaseModelOutput typo to TFBaseModelOutput * update T5 doc with T5ModelEncoder * add T5ModelEncoder to tests * finish pytorch * finish docs and mt5 * add mtf to init * fix init * remove n_positions * finish PR * Update src/transformers/models/mt5/modeling_mt5.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/t5/modeling_t5.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/t5/modeling_tf_t5.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * Update src/transformers/models/mt5/modeling_tf_mt5.py Co-authored-by: Lysandre Debut <lysandre@huggingface.co> * make style Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
1637 lines
72 KiB
Python
1637 lines
72 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch T5 model. """
|
|
|
|
|
|
import copy
|
|
import math
|
|
import os
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from ...activations import ACT2FN
|
|
from ...file_utils import (
|
|
DUMMY_INPUTS,
|
|
DUMMY_MASK,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
replace_return_docstrings,
|
|
)
|
|
from ...modeling_outputs import (
|
|
BaseModelOutput,
|
|
BaseModelOutputWithPastAndCrossAttentions,
|
|
Seq2SeqLMOutput,
|
|
Seq2SeqModelOutput,
|
|
)
|
|
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
|
from ...utils import logging
|
|
from ...utils.model_parallel_utils import assert_device_map, get_device_map
|
|
from .configuration_t5 import T5Config
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = "T5Config"
|
|
_TOKENIZER_FOR_DOC = "T5Tokenizer"
|
|
|
|
####################################################
|
|
# This dict contains ids and associated url
|
|
# for the pretrained weights provided with the models
|
|
####################################################
|
|
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"t5-small",
|
|
"t5-base",
|
|
"t5-large",
|
|
"t5-3b",
|
|
"t5-11b",
|
|
# See all T5 models at https://huggingface.co/models?filter=t5
|
|
]
|
|
|
|
|
|
####################################################
|
|
# This is a conversion method from TF 1.0 to PyTorch
|
|
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
|
|
####################################################
|
|
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
|
|
"""Load tf checkpoints in a pytorch model."""
|
|
try:
|
|
import re
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
logger.error(
|
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
|
"https://www.tensorflow.org/install/ for installation instructions."
|
|
)
|
|
raise
|
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
|
# Load weights from TF model
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
names = []
|
|
tf_weights = {}
|
|
for name, shape in init_vars:
|
|
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
|
array = tf.train.load_variable(tf_path, name)
|
|
names.append(name)
|
|
tf_weights[name] = array
|
|
|
|
for txt_name in names:
|
|
name = txt_name.split("/")
|
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
|
# which are not required for using pretrained model
|
|
if any(
|
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
|
for n in name
|
|
):
|
|
logger.info("Skipping {}".format("/".join(name)))
|
|
tf_weights.pop(txt_name, None)
|
|
continue
|
|
if "_slot_" in name[-1]:
|
|
logger.info("Skipping {}".format("/".join(name)))
|
|
tf_weights.pop(txt_name, None)
|
|
continue
|
|
pointer = model
|
|
array = tf_weights[txt_name]
|
|
|
|
for m_name in name:
|
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
|
scope_names = re.split(r"_(\d+)", m_name)
|
|
else:
|
|
scope_names = [m_name]
|
|
if scope_names[0] in ["kernel", "scale", "embedding"]:
|
|
pointer = getattr(pointer, "weight")
|
|
elif scope_names[0] == "self_attention":
|
|
pointer = getattr(pointer, "layer")
|
|
pointer = pointer[0]
|
|
elif scope_names[0] == "enc_dec_attention":
|
|
pointer = getattr(pointer, "layer")
|
|
pointer = pointer[1]
|
|
elif scope_names[0] == "dense_relu_dense":
|
|
pointer = getattr(pointer, "layer")
|
|
pointer = pointer[2]
|
|
elif scope_names[0] == "rms_norm":
|
|
if hasattr(pointer, "layer_norm"):
|
|
pointer = getattr(pointer, "layer_norm")
|
|
elif hasattr(pointer, "final_layer_norm"):
|
|
pointer = getattr(pointer, "final_layer_norm")
|
|
elif scope_names[0] == "scale":
|
|
pointer = getattr(pointer, "weight")
|
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
|
pointer = getattr(pointer, "bias")
|
|
elif scope_names[0] == "squad":
|
|
pointer = getattr(pointer, "classifier")
|
|
elif scope_names[0] == "decoder" and name[1] == "logits":
|
|
continue
|
|
elif scope_names[0] == "logits":
|
|
pointer = getattr(pointer, "lm_head")
|
|
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
|
|
pointer = getattr(pointer, f"wi_{scope_names[1]}")
|
|
continue
|
|
else:
|
|
try:
|
|
pointer = getattr(pointer, scope_names[0])
|
|
except AttributeError:
|
|
logger.info("Skipping {}".format("/".join(name)))
|
|
continue
|
|
if len(scope_names) >= 2:
|
|
num = int(scope_names[1])
|
|
pointer = pointer[num]
|
|
if scope_names[0] not in ["kernel", "scale", "embedding"]:
|
|
pointer = getattr(pointer, "weight")
|
|
if scope_names[0] != "embedding":
|
|
logger.info("Transposing numpy weight of shape {} for {}".format(array.shape, name))
|
|
array = np.transpose(array)
|
|
try:
|
|
assert (
|
|
pointer.shape == array.shape
|
|
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
|
except AssertionError as e:
|
|
e.args += (pointer.shape, array.shape)
|
|
raise
|
|
logger.info("Initialize PyTorch weight {}".format(name))
|
|
pointer.data = torch.from_numpy(array.astype(np.float32))
|
|
tf_weights.pop(txt_name, None)
|
|
|
|
logger.info("Weights not copied to PyTorch model: {}".format(", ".join(tf_weights.keys())))
|
|
return model
|
|
|
|
|
|
####################################################
|
|
# PyTorch Models are constructed by sub-classing
|
|
# - torch.nn.Module for the layers and
|
|
# - PreTrainedModel for the models (it-self a sub-class of torch.nn.Module)
|
|
####################################################
|
|
PARALLELIZE_DOCSTRING = r"""
|
|
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
|
it will evenly distribute blocks across all devices.
|
|
|
|
Args:
|
|
device_map (:obj:`Dict[int, list]`, optional, defaults to None):
|
|
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
|
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
|
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
|
|
following number of attention modules:
|
|
|
|
- t5-small: 6
|
|
- t5-base: 12
|
|
- t5-large: 24
|
|
- t5-3b: 24
|
|
- t5-11b: 24
|
|
|
|
Example::
|
|
|
|
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
|
|
model = T5ForConditionalGeneration.from_pretrained('t5-3b')
|
|
device_map = {0: [0, 1, 2],
|
|
|
|
1: [3, 4, 5, 6, 7, 8, 9],
|
|
2: [10, 11, 12, 13, 14, 15, 16],
|
|
3: [17, 18, 19, 20, 21, 22, 23]}
|
|
model.parallelize(device_map)
|
|
"""
|
|
DEPARALLELIZE_DOCSTRING = r"""
|
|
Moves the model to cpu from a model parallel state.
|
|
|
|
Example::
|
|
|
|
# On a 4 GPU machine with t5-3b:
|
|
model = T5ForConditionalGeneration.from_pretrained('t5-3b')
|
|
device_map = {0: [0, 1, 2],
|
|
|
|
1: [3, 4, 5, 6, 7, 8, 9],
|
|
2: [10, 11, 12, 13, 14, 15, 16],
|
|
3: [17, 18, 19, 20, 21, 22, 23]}
|
|
model.parallelize(device_map) # Splits the model across several devices
|
|
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
|
"""
|
|
|
|
|
|
class T5LayerNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
# layer norm should always be calculated in float32
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
|
|
# convert into float16 if necessary
|
|
if self.weight.dtype == torch.float16:
|
|
hidden_states = hidden_states.to(torch.float16)
|
|
return self.weight * hidden_states
|
|
|
|
|
|
class T5DenseReluDense(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.wi(hidden_states)
|
|
hidden_states = F.relu(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.wo(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class T5DenseGatedGeluDense(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
|
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
self.gelu_act = ACT2FN["gelu_new"]
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
|
|
hidden_linear = self.wi_1(hidden_states)
|
|
hidden_states = hidden_gelu * hidden_linear
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.wo(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class T5LayerFF(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
if config.feed_forward_proj == "relu":
|
|
self.DenseReluDense = T5DenseReluDense(config)
|
|
elif config.feed_forward_proj == "gated-gelu":
|
|
self.DenseReluDense = T5DenseGatedGeluDense(config)
|
|
else:
|
|
raise ValueError(
|
|
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
|
|
)
|
|
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(self, hidden_states):
|
|
forwarded_states = self.layer_norm(hidden_states)
|
|
forwarded_states = self.DenseReluDense(forwarded_states)
|
|
hidden_states = hidden_states + self.dropout(forwarded_states)
|
|
return hidden_states
|
|
|
|
|
|
class T5Attention(nn.Module):
|
|
def __init__(self, config: T5Config, has_relative_attention_bias=False):
|
|
super().__init__()
|
|
self.is_decoder = config.is_decoder
|
|
self.has_relative_attention_bias = has_relative_attention_bias
|
|
|
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
|
self.d_model = config.d_model
|
|
self.key_value_proj_dim = config.d_kv
|
|
self.n_heads = config.num_heads
|
|
self.dropout = config.dropout_rate
|
|
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
|
|
|
# Mesh TensorFlow initialization to avoid scaling before softmax
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
|
|
|
if self.has_relative_attention_bias:
|
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
|
self.pruned_heads = set()
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
heads, index = find_pruneable_heads_and_indices(
|
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
|
)
|
|
# Prune linear layers
|
|
self.q = prune_linear_layer(self.q, index)
|
|
self.k = prune_linear_layer(self.k, index)
|
|
self.v = prune_linear_layer(self.v, index)
|
|
self.o = prune_linear_layer(self.o, index, dim=1)
|
|
# Update hyper params
|
|
self.n_heads = self.n_heads - len(heads)
|
|
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
@staticmethod
|
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
|
"""
|
|
Adapted from Mesh Tensorflow:
|
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
|
|
Args:
|
|
relative_position: an int32 Tensor
|
|
bidirectional: a boolean - whether the attention is bidirectional
|
|
num_buckets: an integer
|
|
max_distance: an integer
|
|
|
|
Returns:
|
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
"""
|
|
relative_buckets = 0
|
|
if bidirectional:
|
|
num_buckets //= 2
|
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
|
relative_position = torch.abs(relative_position)
|
|
else:
|
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
|
# now relative_position is in the range [0, inf)
|
|
|
|
# half of the buckets are for exact increments in positions
|
|
max_exact = num_buckets // 2
|
|
is_small = relative_position < max_exact
|
|
|
|
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
|
relative_postion_if_large = max_exact + (
|
|
torch.log(relative_position.float() / max_exact)
|
|
/ math.log(max_distance / max_exact)
|
|
* (num_buckets - max_exact)
|
|
).to(torch.long)
|
|
relative_postion_if_large = torch.min(
|
|
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
|
)
|
|
|
|
relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large)
|
|
return relative_buckets
|
|
|
|
def compute_bias(self, query_length, key_length):
|
|
""" Compute binned relative position bias """
|
|
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
|
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
|
relative_position = memory_position - context_position # shape (query_length, key_length)
|
|
relative_position_bucket = self._relative_position_bucket(
|
|
relative_position, # shape (query_length, key_length)
|
|
bidirectional=(not self.is_decoder),
|
|
num_buckets=self.relative_attention_num_buckets,
|
|
)
|
|
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
|
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
|
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
|
return values
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
mask=None,
|
|
key_value_states=None,
|
|
position_bias=None,
|
|
past_key_value=None,
|
|
head_mask=None,
|
|
query_length=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
):
|
|
"""
|
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
|
"""
|
|
# Input is (batch_size, seq_length, dim)
|
|
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
|
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
|
batch_size, seq_length = hidden_states.shape[:2]
|
|
|
|
real_seq_length = seq_length
|
|
|
|
if past_key_value is not None:
|
|
assert (
|
|
len(past_key_value) == 2
|
|
), "past_key_value should have 2 past states: keys and values. Got {} past states".format(
|
|
len(past_key_value)
|
|
)
|
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
|
|
|
def shape(states):
|
|
""" projection """
|
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
|
|
|
def unshape(states):
|
|
""" reshape """
|
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
|
""" projects hidden states correctly to key/query states """
|
|
if key_value_states is None:
|
|
# self-attn
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
hidden_states = shape(proj_layer(hidden_states))
|
|
elif past_key_value is None:
|
|
# cross-attn
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
hidden_states = shape(proj_layer(key_value_states))
|
|
|
|
if past_key_value is not None:
|
|
if key_value_states is None:
|
|
# self-attn
|
|
# (batch_size, n_heads, key_length, dim_per_head)
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
|
else:
|
|
# cross-attn
|
|
hidden_states = past_key_value
|
|
return hidden_states
|
|
|
|
# get query states
|
|
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
|
|
|
|
# get key/value states
|
|
key_states = project(
|
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
|
|
)
|
|
value_states = project(
|
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
|
|
)
|
|
|
|
# compute scores
|
|
scores = torch.matmul(
|
|
query_states, key_states.transpose(3, 2)
|
|
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
|
|
|
if position_bias is None:
|
|
if not self.has_relative_attention_bias:
|
|
position_bias = torch.zeros(
|
|
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
|
)
|
|
else:
|
|
position_bias = self.compute_bias(real_seq_length, key_length)
|
|
|
|
# if key and values are already calculated
|
|
# we want only the last query position bias
|
|
if past_key_value is not None:
|
|
position_bias = position_bias[:, :, -seq_length:, :]
|
|
|
|
if mask is not None:
|
|
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
scores += position_bias
|
|
attn_weights = F.softmax(scores.float(), dim=-1).type_as(
|
|
scores
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
attn_weights = F.dropout(
|
|
attn_weights, p=self.dropout, training=self.training
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attn_weights = attn_weights * head_mask
|
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
|
|
attn_output = self.o(attn_output)
|
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
|
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
|
|
|
if output_attentions:
|
|
outputs = outputs + (attn_weights,)
|
|
return outputs
|
|
|
|
|
|
class T5LayerSelfAttention(nn.Module):
|
|
def __init__(self, config, has_relative_attention_bias=False):
|
|
super().__init__()
|
|
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
position_bias=None,
|
|
head_mask=None,
|
|
past_key_value=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
):
|
|
normed_hidden_states = self.layer_norm(hidden_states)
|
|
attention_output = self.SelfAttention(
|
|
normed_hidden_states,
|
|
mask=attention_mask,
|
|
position_bias=position_bias,
|
|
head_mask=head_mask,
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = hidden_states + self.dropout(attention_output[0])
|
|
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class T5LayerCrossAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
key_value_states,
|
|
attention_mask=None,
|
|
position_bias=None,
|
|
head_mask=None,
|
|
past_key_value=None,
|
|
use_cache=False,
|
|
query_length=None,
|
|
output_attentions=False,
|
|
):
|
|
normed_hidden_states = self.layer_norm(hidden_states)
|
|
attention_output = self.EncDecAttention(
|
|
normed_hidden_states,
|
|
mask=attention_mask,
|
|
key_value_states=key_value_states,
|
|
position_bias=position_bias,
|
|
head_mask=head_mask,
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
query_length=query_length,
|
|
output_attentions=output_attentions,
|
|
)
|
|
layer_output = hidden_states + self.dropout(attention_output[0])
|
|
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class T5Block(nn.Module):
|
|
def __init__(self, config, has_relative_attention_bias=False):
|
|
super().__init__()
|
|
self.is_decoder = config.is_decoder
|
|
self.layer = nn.ModuleList()
|
|
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
|
|
if self.is_decoder:
|
|
self.layer.append(T5LayerCrossAttention(config))
|
|
|
|
self.layer.append(T5LayerFF(config))
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
position_bias=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
encoder_decoder_position_bias=None,
|
|
head_mask=None,
|
|
past_key_value=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
return_dict=True,
|
|
):
|
|
|
|
if past_key_value is not None:
|
|
assert self.is_decoder, "Only decoder can use `past_key_values`"
|
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
|
|
|
error_message = "There should be {} past states. 2 (past / key) for self attention.{} Got {} past key / value states".format(
|
|
expected_num_past_key_values,
|
|
"2 (past / key) for cross attention" if expected_num_past_key_values == 4 else "",
|
|
len(past_key_value),
|
|
)
|
|
assert len(past_key_value) == expected_num_past_key_values, error_message
|
|
|
|
self_attn_past_key_value = past_key_value[:2]
|
|
cross_attn_past_key_value = past_key_value[2:]
|
|
else:
|
|
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
|
|
|
self_attention_outputs = self.layer[0](
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_bias=position_bias,
|
|
head_mask=head_mask,
|
|
past_key_value=self_attn_past_key_value,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
|
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
|
if do_cross_attention:
|
|
# the actual query length is unknown for cross attention
|
|
# if using past key value states. Need to inject it here
|
|
if present_key_value_state is not None:
|
|
query_length = present_key_value_state[0].shape[2]
|
|
else:
|
|
query_length = None
|
|
|
|
cross_attention_outputs = self.layer[1](
|
|
hidden_states,
|
|
key_value_states=encoder_hidden_states,
|
|
attention_mask=encoder_attention_mask,
|
|
position_bias=encoder_decoder_position_bias,
|
|
head_mask=head_mask,
|
|
past_key_value=cross_attn_past_key_value,
|
|
query_length=query_length,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = cross_attention_outputs[0]
|
|
# Combine self attn and cross attn key value states
|
|
if present_key_value_state is not None:
|
|
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
|
|
|
# Keep cross-attention outputs and relative position weights
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
|
|
|
# Apply Feed Forward layer
|
|
hidden_states = self.layer[-1](hidden_states)
|
|
outputs = (hidden_states,)
|
|
|
|
outputs = outputs + (present_key_value_state,) + attention_outputs
|
|
return outputs # hidden-states, present_key_value_states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
|
|
|
|
|
|
class T5PreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = T5Config
|
|
load_tf_weights = load_tf_weights_in_t5
|
|
base_model_prefix = "transformer"
|
|
|
|
@property
|
|
def dummy_inputs(self):
|
|
input_ids = torch.tensor(DUMMY_INPUTS)
|
|
input_mask = torch.tensor(DUMMY_MASK)
|
|
dummy_inputs = {
|
|
"decoder_input_ids": input_ids,
|
|
"input_ids": input_ids,
|
|
"decoder_attention_mask": input_mask,
|
|
}
|
|
return dummy_inputs
|
|
|
|
def _init_weights(self, module):
|
|
""" Initialize the weights """
|
|
factor = self.config.initializer_factor # Used for testing weights initialization
|
|
if isinstance(module, T5LayerNorm):
|
|
module.weight.data.fill_(factor * 1.0)
|
|
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)):
|
|
# Mesh TensorFlow embeddings initialization
|
|
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
|
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
|
elif isinstance(module, T5DenseReluDense):
|
|
# Mesh TensorFlow FF initialization
|
|
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
|
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
|
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
|
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
|
module.wi.bias.data.zero_()
|
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
|
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
|
module.wo.bias.data.zero_()
|
|
elif isinstance(module, T5DenseGatedGeluDense):
|
|
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
|
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
|
module.wi_0.bias.data.zero_()
|
|
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
|
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
|
module.wi_1.bias.data.zero_()
|
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
|
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
|
module.wo.bias.data.zero_()
|
|
elif isinstance(module, T5Attention):
|
|
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
|
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
|
d_model = self.config.d_model
|
|
key_value_proj_dim = self.config.d_kv
|
|
n_heads = self.config.num_heads
|
|
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
|
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
|
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
|
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
|
if module.has_relative_attention_bias:
|
|
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
|
|
|
def _shift_right(self, input_ids):
|
|
decoder_start_token_id = self.config.decoder_start_token_id
|
|
pad_token_id = self.config.pad_token_id
|
|
|
|
assert (
|
|
decoder_start_token_id is not None
|
|
), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information"
|
|
|
|
# shift inputs to the right
|
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
|
shifted_input_ids[..., 0] = decoder_start_token_id
|
|
|
|
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
|
# replace possible -100 values in labels by `pad_token_id`
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
|
|
|
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
|
|
|
|
return shifted_input_ids
|
|
|
|
|
|
class T5Stack(T5PreTrainedModel):
|
|
def __init__(self, config, embed_tokens=None):
|
|
super().__init__(config)
|
|
|
|
self.embed_tokens = embed_tokens
|
|
self.is_decoder = config.is_decoder
|
|
|
|
self.block = nn.ModuleList(
|
|
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
|
)
|
|
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
self.init_weights()
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def parallelize(self, device_map=None):
|
|
# Check validity of device_map
|
|
self.device_map = (
|
|
get_device_map(len(self.block), torch.cuda.device_count()) if device_map is None else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.block))
|
|
self.model_parallel = True
|
|
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
|
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
|
# Load onto devices
|
|
for k, v in self.device_map.items():
|
|
for layer in v:
|
|
cuda_device = "cuda:" + str(k)
|
|
self.block[layer] = self.block[layer].to(cuda_device)
|
|
|
|
# Set embed_tokens to first layer
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
|
# Set final layer norm to last device
|
|
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def deparallelize(self):
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
self.first_device = "cpu"
|
|
self.last_device = "cpu"
|
|
for i in range(len(self.block)):
|
|
self.block[i] = self.block[i].to("cpu")
|
|
self.embed_tokens = self.embed_tokens.to("cpu")
|
|
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def get_output_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.embed_tokens = new_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
inputs_embeds=None,
|
|
head_mask=None,
|
|
past_key_values=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
# Model parallel
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.first_device)
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
|
raise ValueError(
|
|
f"You cannot specify both {err_msg_prefix}inputs and {err_msg_prefix}inputs_embeds at the same time"
|
|
)
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
|
raise ValueError(f"You have to specify either {err_msg_prefix}inputs or {err_msg_prefix}inputs_embeds")
|
|
|
|
if inputs_embeds is None:
|
|
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
batch_size, seq_length = input_shape
|
|
|
|
# required mask seq length can be calculated via length of past
|
|
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
|
|
|
if use_cache is True:
|
|
assert self.is_decoder, ":obj:`use_cache` can only be set to `True` if {} is used as a decoder".format(
|
|
self
|
|
)
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device)
|
|
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
|
encoder_seq_length = encoder_hidden_states.shape[1]
|
|
encoder_attention_mask = torch.ones(
|
|
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
|
)
|
|
|
|
# initialize past_key_values with `None` if past does not exist
|
|
if past_key_values is None:
|
|
past_key_values = [None] * len(self.block)
|
|
|
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, inputs_embeds.device)
|
|
|
|
if self.is_decoder and encoder_attention_mask is not None:
|
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
|
else:
|
|
encoder_extended_attention_mask = None
|
|
|
|
# Prepare head mask if needed
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
|
present_key_value_states = () if use_cache else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
|
position_bias = None
|
|
encoder_decoder_position_bias = None
|
|
|
|
hidden_states = self.dropout(inputs_embeds)
|
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
|
# Model parallel
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(hidden_states.device)
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
if position_bias is not None:
|
|
position_bias = position_bias.to(hidden_states.device)
|
|
if encoder_hidden_states is not None:
|
|
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
|
if encoder_extended_attention_mask is not None:
|
|
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
|
if encoder_decoder_position_bias is not None:
|
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_outputs = layer_module(
|
|
hidden_states,
|
|
attention_mask=extended_attention_mask,
|
|
position_bias=position_bias,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
|
head_mask=head_mask[i],
|
|
past_key_value=past_key_value,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
# layer_outputs is a tuple with:
|
|
# hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
|
|
hidden_states, present_key_value_state = layer_outputs[:2]
|
|
|
|
# We share the position biases between the layers - the first layer store them
|
|
# layer_outputs = hidden-states, key-value-states (self-attention weights),
|
|
# (self-attention position bias), (cross-attention weights), (cross-attention position bias)
|
|
position_bias = layer_outputs[2]
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
|
# append next layer key value states
|
|
if use_cache:
|
|
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[3],)
|
|
if self.is_decoder:
|
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
if self.model_parallel:
|
|
for k, v in self.device_map.items():
|
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
# Add last layer
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [
|
|
hidden_states,
|
|
present_key_value_states,
|
|
all_hidden_states,
|
|
all_attentions,
|
|
all_cross_attentions,
|
|
]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=present_key_value_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_attentions,
|
|
cross_attentions=all_cross_attentions,
|
|
)
|
|
|
|
|
|
T5_START_DOCSTRING = r"""
|
|
|
|
The T5 model was proposed in `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
|
|
<https://arxiv.org/abs/1910.10683>`__ by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
|
|
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text
|
|
denoising generative setting.
|
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
|
pruning heads etc.)
|
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
|
general usage and behavior.
|
|
|
|
Parameters:
|
|
config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the
|
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
|
weights.
|
|
"""
|
|
|
|
T5_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
|
should be able to pad the inputs on both the right and the left.
|
|
|
|
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
|
detail.
|
|
|
|
To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training
|
|
<./t5.html#training>`__.
|
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
|
|
Provide for sequence to sequence training. T5 uses the :obj:`pad_token_id` as the starting token for
|
|
:obj:`decoder_input_ids` generation. If :obj:`past_key_values` is used, optionally only the last
|
|
:obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`).
|
|
|
|
To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training
|
|
<./t5.html#training>`__. If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset,
|
|
:obj:`decoder_input_ids` takes the value of :obj:`input_ids`.
|
|
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`):
|
|
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
|
|
also be used by default.
|
|
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
|
|
Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`:
|
|
`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
|
|
sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of
|
|
the decoder.
|
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
|
vectors than the model's internal embedding lookup matrix.
|
|
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
|
|
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
|
|
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
|
|
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
|
|
|
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
|
|
takes the value of :obj:`inputs_embeds`.
|
|
|
|
use_cache (:obj:`bool`, `optional`):
|
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
decoding (see :obj:`past_key_values`).
|
|
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
|
more detail.
|
|
return_dict (:obj:`bool`, `optional`):
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
"""
|
|
|
|
T5_ENCODER_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
|
should be able to pad the inputs on both the right and the left.
|
|
|
|
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See
|
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
|
detail.
|
|
|
|
To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training
|
|
<./t5.html#training>`__.
|
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
|
vectors than the model's internal embedding lookup matrix.
|
|
output_attentions (:obj:`bool`, `optional`):
|
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (:obj:`bool`, `optional`):
|
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
|
more detail.
|
|
return_dict (:obj:`bool`, `optional`):
|
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare T5 Model transformer outputting raw hidden-states" "without any specific head on top.",
|
|
T5_START_DOCSTRING,
|
|
)
|
|
class T5Model(T5PreTrainedModel):
|
|
_keys_to_ignore_on_load_missing = [
|
|
r"encoder\.embed_tokens\.weight",
|
|
r"decoder\.embed_tokens\.weight",
|
|
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
|
]
|
|
|
|
def __init__(self, config: T5Config):
|
|
super().__init__(config)
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
|
|
|
encoder_config = copy.deepcopy(config)
|
|
encoder_config.use_cache = False
|
|
encoder_config.is_encoder_decoder = False
|
|
self.encoder = T5Stack(encoder_config, self.shared)
|
|
|
|
decoder_config = copy.deepcopy(config)
|
|
decoder_config.is_decoder = True
|
|
decoder_config.is_encoder_decoder = False
|
|
decoder_config.num_layers = config.num_decoder_layers
|
|
self.decoder = T5Stack(decoder_config, self.shared)
|
|
|
|
self.init_weights()
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def parallelize(self, device_map=None):
|
|
self.device_map = (
|
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
|
if device_map is None
|
|
else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.encoder.block))
|
|
self.encoder.parallelize(self.device_map)
|
|
self.decoder.parallelize(self.device_map)
|
|
self.model_parallel = True
|
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
|
def deparallelize(self):
|
|
self.encoder.deparallelize()
|
|
self.decoder.deparallelize()
|
|
self.encoder = self.encoder.to("cpu")
|
|
self.decoder = self.decoder.to("cpu")
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.shared
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.shared = new_embeddings
|
|
self.encoder.set_input_embeddings(new_embeddings)
|
|
self.decoder.set_input_embeddings(new_embeddings)
|
|
|
|
def get_encoder(self):
|
|
return self.encoder
|
|
|
|
def get_decoder(self):
|
|
return self.decoder
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
encoder_outputs=None,
|
|
past_key_values=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
Example::
|
|
|
|
>>> from transformers import T5Tokenizer, T5Model
|
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
|
>>> model = T5Model.from_pretrained('t5-small')
|
|
|
|
>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
|
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
|
|
|
>>> last_hidden_states = outputs.last_hidden_state
|
|
"""
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# Encode if needed (training, first prediction pass)
|
|
if encoder_outputs is None:
|
|
encoder_outputs = self.encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
|
encoder_outputs = BaseModelOutput(
|
|
last_hidden_state=encoder_outputs[0],
|
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
)
|
|
|
|
hidden_states = encoder_outputs[0]
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.decoder.first_device)
|
|
# Set device for model parallelism
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.decoder.first_device)
|
|
hidden_states = hidden_states.to(self.decoder.first_device)
|
|
if decoder_input_ids is not None:
|
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.to(self.decoder.first_device)
|
|
if decoder_attention_mask is not None:
|
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
|
|
|
# Decode
|
|
decoder_outputs = self.decoder(
|
|
input_ids=decoder_input_ids,
|
|
attention_mask=decoder_attention_mask,
|
|
inputs_embeds=decoder_inputs_embeds,
|
|
past_key_values=past_key_values,
|
|
encoder_hidden_states=hidden_states,
|
|
encoder_attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
if not return_dict:
|
|
return decoder_outputs + encoder_outputs
|
|
|
|
return Seq2SeqModelOutput(
|
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
past_key_values=decoder_outputs.past_key_values,
|
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
decoder_attentions=decoder_outputs.attentions,
|
|
cross_attentions=decoder_outputs.cross_attentions,
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
encoder_attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings("""T5 Model with a `language modeling` head on top. """, T5_START_DOCSTRING)
|
|
class T5ForConditionalGeneration(T5PreTrainedModel):
|
|
_keys_to_ignore_on_load_missing = [
|
|
r"encoder\.embed_tokens\.weight",
|
|
r"decoder\.embed_tokens\.weight",
|
|
r"lm_head\.weight",
|
|
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
|
]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model_dim = config.d_model
|
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
|
|
|
encoder_config = copy.deepcopy(config)
|
|
encoder_config.use_cache = False
|
|
encoder_config.is_encoder_decoder = False
|
|
self.encoder = T5Stack(encoder_config, self.shared)
|
|
|
|
decoder_config = copy.deepcopy(config)
|
|
decoder_config.is_decoder = True
|
|
decoder_config.is_encoder_decoder = False
|
|
decoder_config.num_layers = config.num_decoder_layers
|
|
self.decoder = T5Stack(decoder_config, self.shared)
|
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
|
|
|
self.init_weights()
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
|
def parallelize(self, device_map=None):
|
|
self.device_map = (
|
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
|
if device_map is None
|
|
else device_map
|
|
)
|
|
assert_device_map(self.device_map, len(self.encoder.block))
|
|
self.encoder.parallelize(self.device_map)
|
|
self.decoder.parallelize(self.device_map)
|
|
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
|
self.model_parallel = True
|
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
|
def deparallelize(self):
|
|
self.encoder.deparallelize()
|
|
self.decoder.deparallelize()
|
|
self.encoder = self.encoder.to("cpu")
|
|
self.decoder = self.decoder.to("cpu")
|
|
self.lm_head = self.lm_head.to("cpu")
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.shared
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.shared = new_embeddings
|
|
self.encoder.set_input_embeddings(new_embeddings)
|
|
self.decoder.set_input_embeddings(new_embeddings)
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def get_encoder(self):
|
|
return self.encoder
|
|
|
|
def get_decoder(self):
|
|
return self.decoder
|
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
decoder_input_ids=None,
|
|
decoder_attention_mask=None,
|
|
encoder_outputs=None,
|
|
past_key_values=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
decoder_inputs_embeds=None,
|
|
labels=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
|
|
config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
|
|
labels in ``[0, ..., config.vocab_size]``
|
|
|
|
Returns:
|
|
|
|
Examples::
|
|
|
|
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
|
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
|
|
|
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
|
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids
|
|
>>> outputs = model(input_ids=input_ids, labels=labels)
|
|
>>> loss = outputs.loss
|
|
>>> logits = outputs.logits
|
|
|
|
>>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you ", return_tensors="pt").input_ids # Batch size 1
|
|
>>> outputs = model.generate(input_ids)
|
|
"""
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# Encode if needed (training, first prediction pass)
|
|
if encoder_outputs is None:
|
|
# Convert encoder inputs in embeddings if needed
|
|
encoder_outputs = self.encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
|
encoder_outputs = BaseModelOutput(
|
|
last_hidden_state=encoder_outputs[0],
|
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
)
|
|
|
|
hidden_states = encoder_outputs[0]
|
|
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.decoder.first_device)
|
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
|
# get decoder inputs from shifting lm labels to the right
|
|
decoder_input_ids = self._shift_right(labels)
|
|
|
|
# If decoding with past key value states, only the last tokens
|
|
# should be given as an input
|
|
if past_key_values is not None:
|
|
assert labels is None, "Decoder should not use cached key value states when training."
|
|
if decoder_input_ids is not None:
|
|
decoder_input_ids = decoder_input_ids[:, -1:]
|
|
if decoder_inputs_embeds is not None:
|
|
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
|
|
|
|
# Set device for model parallelism
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.decoder.first_device)
|
|
hidden_states = hidden_states.to(self.decoder.first_device)
|
|
if decoder_input_ids is not None:
|
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask.to(self.decoder.first_device)
|
|
if decoder_attention_mask is not None:
|
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
|
|
|
# Decode
|
|
decoder_outputs = self.decoder(
|
|
input_ids=decoder_input_ids,
|
|
attention_mask=decoder_attention_mask,
|
|
inputs_embeds=decoder_inputs_embeds,
|
|
past_key_values=past_key_values,
|
|
encoder_hidden_states=hidden_states,
|
|
encoder_attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = decoder_outputs[0]
|
|
|
|
# Set device for model parallelism
|
|
if self.model_parallel:
|
|
torch.cuda.set_device(self.encoder.first_device)
|
|
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
|
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
|
|
|
if self.config.tie_word_embeddings:
|
|
# Rescale output before projecting on vocab
|
|
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
|
sequence_output = sequence_output * (self.model_dim ** -0.5)
|
|
|
|
lm_logits = self.lm_head(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
|
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return Seq2SeqLMOutput(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
past_key_values=decoder_outputs.past_key_values,
|
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
decoder_attentions=decoder_outputs.attentions,
|
|
cross_attentions=decoder_outputs.cross_attentions,
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
encoder_attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
|
|
):
|
|
|
|
# cut decoder_input_ids if past is used
|
|
if past is not None:
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
return {
|
|
"decoder_input_ids": input_ids,
|
|
"past_key_values": past,
|
|
"encoder_outputs": encoder_outputs,
|
|
"attention_mask": attention_mask,
|
|
"use_cache": use_cache,
|
|
}
|
|
|
|
def _reorder_cache(self, past, beam_idx):
|
|
# if decoder past is not included in output
|
|
# speedy decoding is disabled and no need to reorder
|
|
if past is None:
|
|
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
|
return past
|
|
|
|
reordered_decoder_past = ()
|
|
for layer_past_states in past:
|
|
# get the correct batch idx from layer past batch dim
|
|
# batch dim of `past` is at 2nd position
|
|
reordered_layer_past_states = ()
|
|
for layer_past_state in layer_past_states:
|
|
# need to set correct `past` for each of the four key / value states
|
|
reordered_layer_past_states = reordered_layer_past_states + (
|
|
layer_past_state.index_select(0, beam_idx),
|
|
)
|
|
|
|
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
|
assert len(reordered_layer_past_states) == len(layer_past_states)
|
|
|
|
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
|
return reordered_decoder_past
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare T5 Model transformer outputting encoder's raw hidden-states" "without any specific head on top.",
|
|
T5_START_DOCSTRING,
|
|
)
|
|
class T5EncoderModel(T5PreTrainedModel):
|
|
authorized_missing_keys = [
|
|
r"encoder\.embed_tokens\.weight",
|
|
]
|
|
|
|
def __init__(self, config: T5Config):
|
|
super().__init__(config)
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
|
|
|
encoder_config = copy.deepcopy(config)
|
|
encoder_config.use_cache = False
|
|
encoder_config.is_encoder_decoder = False
|
|
self.encoder = T5Stack(encoder_config, self.shared)
|
|
|
|
self.init_weights()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.shared
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.shared = new_embeddings
|
|
self.encoder.set_input_embeddings(new_embeddings)
|
|
|
|
def get_encoder(self):
|
|
return self.encoder
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
r"""
|
|
Returns:
|
|
|
|
Example::
|
|
|
|
>>> from transformers import T5Tokenizer, T5EncoderModel
|
|
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
|
>>> model = T5EncoderModel.from_pretrained('t5-small')
|
|
>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
|
|
>>> outputs = model(input_ids=input_ids)
|
|
>>> last_hidden_states = outputs.last_hidden_state
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
encoder_outputs = self.encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
return encoder_outputs
|