mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* rm test_sdpa_equivalence * make fixup --------- Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
212 lines
8.0 KiB
Python
212 lines
8.0 KiB
Python
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
|
|
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Nemotron model."""
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import NemotronConfig, is_torch_available
|
|
from transformers.testing_utils import (
|
|
Expectations,
|
|
is_flaky,
|
|
require_flash_attn,
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
|
|
from ...test_configuration_common import ConfigTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
NemotronForCausalLM,
|
|
NemotronForQuestionAnswering,
|
|
NemotronForSequenceClassification,
|
|
NemotronForTokenClassification,
|
|
NemotronModel,
|
|
)
|
|
|
|
|
|
class NemotronModelTester(GemmaModelTester):
|
|
if is_torch_available():
|
|
config_class = NemotronConfig
|
|
model_class = NemotronModel
|
|
for_causal_lm_class = NemotronForCausalLM
|
|
for_sequence_class = NemotronForSequenceClassification
|
|
for_token_class = NemotronForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class NemotronModelTest(GemmaModelTest):
|
|
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
|
|
# This is because we are hitting edge cases with the causal_mask buffer
|
|
model_split_percents = [0.5, 0.7, 0.8]
|
|
all_model_classes = (
|
|
(
|
|
NemotronModel,
|
|
NemotronForCausalLM,
|
|
NemotronForSequenceClassification,
|
|
NemotronForQuestionAnswering,
|
|
NemotronForTokenClassification,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": NemotronModel,
|
|
"text-classification": NemotronForSequenceClassification,
|
|
"text-generation": NemotronForCausalLM,
|
|
"zero-shot": NemotronForSequenceClassification,
|
|
"question-answering": NemotronForQuestionAnswering,
|
|
"token-classification": NemotronForTokenClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
# used in `test_torch_compile_for_training`
|
|
_torch_compile_train_cls = NemotronForCausalLM if is_torch_available() else None
|
|
|
|
def setUp(self):
|
|
self.model_tester = NemotronModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=NemotronConfig, hidden_size=37)
|
|
|
|
@unittest.skip("Eager and SDPA do not produce the same outputs, thus this test fails")
|
|
def test_model_outputs_equivalence(self, **kwargs):
|
|
pass
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@is_flaky()
|
|
@slow
|
|
def test_flash_attn_2_equivalence(self):
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(reason="Model does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
dummy_input = dummy_input.to(torch_device)
|
|
outputs = model(dummy_input, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
|
|
|
|
logits = outputs.hidden_states[-1]
|
|
logits_fa = outputs_fa.hidden_states[-1]
|
|
|
|
# nemotron flash attention 2 needs a high tolerance
|
|
assert torch.allclose(logits_fa, logits, atol=1e-2)
|
|
|
|
|
|
@require_torch_accelerator
|
|
class NemotronIntegrationTest(unittest.TestCase):
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_nemotron_8b_generation_sdpa(self):
|
|
text = ["What is the largest planet in solar system?"]
|
|
EXPECTED_TEXT = [
|
|
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer",
|
|
]
|
|
model_id = "thhaus/nemotron3-8b"
|
|
model = NemotronForCausalLM.from_pretrained(
|
|
model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(text, return_tensors="pt").to(torch_device)
|
|
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=10)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT, output_text)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_nemotron_8b_generation_eager(self):
|
|
text = ["What is the largest planet in solar system?"]
|
|
EXPECTED_TEXTS = Expectations(
|
|
{
|
|
("xpu", 3): [
|
|
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer: What is the name of the 19",
|
|
],
|
|
("cuda", 7): [
|
|
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer",
|
|
],
|
|
}
|
|
)
|
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
|
model_id = "thhaus/nemotron3-8b"
|
|
model = NemotronForCausalLM.from_pretrained(
|
|
model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="eager"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(text, return_tensors="pt").to(torch_device)
|
|
|
|
output = model.generate(**inputs, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT, output_text)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_nemotron_8b_generation_fa2(self):
|
|
text = ["What is the largest planet in solar system?"]
|
|
EXPECTED_TEXT = [
|
|
"What is the largest planet in solar system?\nAnswer: Jupiter\n\nWhat is the answer",
|
|
]
|
|
model_id = "thhaus/nemotron3-8b"
|
|
model = NemotronForCausalLM.from_pretrained(
|
|
model_id, torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(text, return_tensors="pt").to(torch_device)
|
|
|
|
output = model.generate(**inputs, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT, output_text)
|