mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* First draft * Update self-attention of RoBERTa as proposition * Improve conversion script * Add TrOCR decoder-only model * More improvements * Make forward pass with pretrained weights work * More improvements * Some more improvements * More improvements * Make conversion work * Clean up print statements * Add documentation, processor * Add test files * Small improvements * Some more improvements * Make fix-copies, improve docs * Make all vision encoder decoder model tests pass * Make conversion script support other models * Update URL for OCR image * Update conversion script * Fix style & quality * Add support for the large-printed model * Fix some issues * Add print statement for debugging * Add print statements for debugging * Make possible fix for sinusoidal embedding * Further debugging * Potential fix v2 * Add more print statements for debugging * Add more print statements for debugging * Deubg more * Comment out print statements * Make conversion of large printed model possible, address review comments * Make it possible to convert the stage1 checkpoints * Clean up code, apply suggestions from code review * Apply suggestions from code review, use Microsoft models in tests * Rename encoder_hidden_size to cross_attention_hidden_size * Improve docs
659 lines
27 KiB
Python
659 lines
27 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from datasets import load_dataset
|
|
|
|
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
|
|
from .test_modeling_bert import BertModelTester
|
|
from .test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
|
|
from .test_modeling_deit import DeiTModelTester
|
|
from .test_modeling_trocr import TrOCRStandaloneDecoderModelTester
|
|
from .test_modeling_vit import ViTModelTester
|
|
|
|
|
|
if is_torch_available():
|
|
import numpy as np
|
|
import torch
|
|
|
|
from transformers import (
|
|
BertLMHeadModel,
|
|
DeiTModel,
|
|
TrOCRForCausalLM,
|
|
VisionEncoderDecoderConfig,
|
|
VisionEncoderDecoderModel,
|
|
ViTModel,
|
|
)
|
|
from transformers.modeling_outputs import BaseModelOutput
|
|
from transformers.models.vit.modeling_vit import to_2tuple
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import TrOCRProcessor
|
|
|
|
|
|
@require_torch
|
|
class EncoderDecoderMixin:
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
pass
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pass
|
|
|
|
def get_pretrained_model_and_inputs(self):
|
|
pass
|
|
|
|
def check_encoder_decoder_model_from_pretrained_configs(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
|
|
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
|
|
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder_decoder_config)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
|
|
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
|
|
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(
|
|
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
|
|
)
|
|
|
|
def check_encoder_decoder_model(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
|
|
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
|
|
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
output_hidden_states=True,
|
|
)
|
|
self.assertEqual(
|
|
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
|
|
)
|
|
encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1])
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
encoder_outputs=encoder_outputs,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(
|
|
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
|
|
)
|
|
|
|
def check_encoder_decoder_model_from_pretrained(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
return_dict,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
|
|
enc_dec_model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
output_hidden_states=True,
|
|
return_dict=True,
|
|
)
|
|
|
|
self.assertEqual(
|
|
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
|
|
)
|
|
|
|
def check_save_and_load(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
with torch.no_grad():
|
|
outputs = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
enc_dec_model.save_pretrained(tmpdirname)
|
|
enc_dec_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname)
|
|
enc_dec_model.to(torch_device)
|
|
|
|
after_outputs = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def check_save_and_load_encoder_decoder_model(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
with torch.no_grad():
|
|
outputs = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
|
|
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
|
|
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
|
|
VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
|
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
|
|
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
|
|
)
|
|
|
|
after_outputs = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def check_encoder_decoder_model_output_attentions(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
labels=None,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
# make the decoder inputs a different shape from the encoder inputs to harden the test
|
|
decoder_input_ids = decoder_input_ids[:, :-1]
|
|
decoder_attention_mask = decoder_attention_mask[:, :-1]
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
output_attentions=True,
|
|
)
|
|
|
|
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
|
|
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
|
|
|
|
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = to_2tuple(encoder_model.config.image_size)
|
|
patch_size = to_2tuple(encoder_model.config.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
seq_len = num_patches + 1
|
|
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
|
|
|
|
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
|
|
num_decoder_layers = (
|
|
decoder_config.num_decoder_layers
|
|
if hasattr(decoder_config, "num_decoder_layers")
|
|
else decoder_config.num_hidden_layers
|
|
)
|
|
self.assertEqual(len(decoder_attentions), num_decoder_layers)
|
|
|
|
self.assertEqual(
|
|
decoder_attentions[0].shape[-3:],
|
|
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
|
|
)
|
|
|
|
cross_attentions = outputs_encoder_decoder["cross_attentions"]
|
|
self.assertEqual(len(cross_attentions), num_decoder_layers)
|
|
|
|
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
|
|
self.assertEqual(
|
|
cross_attentions[0].shape[-3:],
|
|
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
|
|
)
|
|
|
|
def check_encoder_decoder_model_generate(self, config, decoder_config, pixel_values=None, **kwargs):
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
|
|
inputs = pixel_values
|
|
|
|
# Bert does not have a bos token id, so use pad_token_id instead
|
|
generated_output = enc_dec_model.generate(
|
|
inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
|
|
)
|
|
self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,))
|
|
|
|
def test_encoder_decoder_model(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_from_pretrained_configs(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_from_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)
|
|
|
|
def test_encoder_decoder_model_from_pretrained_return_dict(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
|
|
|
|
def test_save_and_load_from_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_save_and_load(**input_ids_dict)
|
|
|
|
def test_save_and_load_from_encoder_decoder_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_output_attentions(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_output_attentions(**input_ids_dict)
|
|
|
|
def test_encoder_decoder_model_generate(self):
|
|
input_ids_dict = self.prepare_config_and_inputs()
|
|
self.check_encoder_decoder_model_generate(**input_ids_dict)
|
|
|
|
@slow
|
|
def test_real_model_save_load_from_pretrained(self):
|
|
model_2, inputs = self.get_pretrained_model_and_inputs()
|
|
model_2.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model_2(**inputs)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dirname:
|
|
model_2.save_pretrained(tmp_dirname)
|
|
model_1 = VisionEncoderDecoderModel.from_pretrained(tmp_dirname)
|
|
model_1.to(torch_device)
|
|
|
|
after_outputs = model_1(**inputs)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
|
|
@require_torch
|
|
class DeiT2RobertaModelTest(EncoderDecoderMixin, unittest.TestCase):
|
|
def get_pretrained_model_and_inputs(self):
|
|
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
|
"hf-internal-testing/tiny-random-deit", "hf-internal-testing/tiny-random-roberta"
|
|
)
|
|
batch_size = 13
|
|
pixel_values = floats_tensor(
|
|
[
|
|
batch_size,
|
|
model.encoder.config.num_channels,
|
|
model.encoder.config.image_size,
|
|
model.encoder.config.image_size,
|
|
]
|
|
)
|
|
# for DEiT, the sequence length is equal to the number of patches + 2 (for the [CLS] and distillation tokens)
|
|
seq_len = (model.encoder.config.image_size // model.encoder.config.patch_size) ** 2 + 2
|
|
attention_mask = random_attention_mask([batch_size, seq_len])
|
|
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
|
|
decoder_attention_mask = random_attention_mask([batch_size, 4])
|
|
inputs = {
|
|
"pixel_values": pixel_values,
|
|
"attention_mask": attention_mask,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
}
|
|
|
|
return model, inputs
|
|
|
|
def check_encoder_decoder_model_output_attentions(
|
|
self,
|
|
config,
|
|
attention_mask,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
labels=None,
|
|
pixel_values=None,
|
|
**kwargs
|
|
):
|
|
# make the decoder inputs a different shape from the encoder inputs to harden the test
|
|
decoder_input_ids = decoder_input_ids[:, :-1]
|
|
decoder_attention_mask = decoder_attention_mask[:, :-1]
|
|
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
|
|
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
decoder_input_ids=decoder_input_ids,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
output_attentions=True,
|
|
)
|
|
|
|
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
|
|
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
|
|
|
|
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
|
|
image_size = to_2tuple(encoder_model.config.image_size)
|
|
patch_size = to_2tuple(encoder_model.config.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
seq_len = num_patches + 2
|
|
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
|
|
|
|
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
|
|
num_decoder_layers = (
|
|
decoder_config.num_decoder_layers
|
|
if hasattr(decoder_config, "num_decoder_layers")
|
|
else decoder_config.num_hidden_layers
|
|
)
|
|
self.assertEqual(len(decoder_attentions), num_decoder_layers)
|
|
|
|
self.assertEqual(
|
|
decoder_attentions[0].shape[-3:],
|
|
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
|
|
)
|
|
|
|
cross_attentions = outputs_encoder_decoder["cross_attentions"]
|
|
self.assertEqual(len(cross_attentions), num_decoder_layers)
|
|
|
|
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
|
|
self.assertEqual(
|
|
cross_attentions[0].shape[-3:],
|
|
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
|
|
)
|
|
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
encoder_model = DeiTModel(config).eval()
|
|
decoder_model = BertLMHeadModel(decoder_config).eval()
|
|
return encoder_model, decoder_model
|
|
|
|
def prepare_config_and_inputs(self):
|
|
bert_model_tester = BertModelTester(self)
|
|
deit_model_tester = DeiTModelTester(self)
|
|
encoder_config_and_inputs = deit_model_tester.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
|
|
config, pixel_values, _ = encoder_config_and_inputs
|
|
input_mask = None # TODO add once attention_mask is supported for vision models
|
|
(
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_token_type_ids,
|
|
decoder_input_mask,
|
|
decoder_sequence_labels,
|
|
decoder_token_labels,
|
|
decoder_choice_labels,
|
|
encoder_attention_mask,
|
|
_,
|
|
) = decoder_config_and_inputs
|
|
|
|
# make sure that cross attention layers are added
|
|
decoder_config.add_cross_attention = True
|
|
return {
|
|
"config": config,
|
|
"pixel_values": pixel_values,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_token_type_ids": decoder_token_type_ids,
|
|
"decoder_attention_mask": decoder_input_mask,
|
|
"decoder_sequence_labels": decoder_sequence_labels,
|
|
"decoder_token_labels": decoder_token_labels,
|
|
"decoder_choice_labels": decoder_choice_labels,
|
|
"labels": decoder_token_labels,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
class ViT2BertModelTest(EncoderDecoderMixin, unittest.TestCase):
|
|
def get_pretrained_model_and_inputs(self):
|
|
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
|
"hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert"
|
|
)
|
|
batch_size = 13
|
|
pixel_values = floats_tensor(
|
|
[
|
|
batch_size,
|
|
model.encoder.config.num_channels,
|
|
model.encoder.config.image_size,
|
|
model.encoder.config.image_size,
|
|
]
|
|
)
|
|
# for ViT, the sequence length is equal to the number of patches + 1 (for the [CLS] token)
|
|
seq_len = (model.encoder.config.image_size // model.encoder.config.patch_size) ** 2 + 1
|
|
attention_mask = random_attention_mask([batch_size, seq_len])
|
|
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
|
|
decoder_attention_mask = random_attention_mask([batch_size, 4])
|
|
inputs = {
|
|
"pixel_values": pixel_values,
|
|
"attention_mask": attention_mask,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
}
|
|
|
|
return model, inputs
|
|
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
encoder_model = ViTModel(config).eval()
|
|
decoder_model = BertLMHeadModel(decoder_config).eval()
|
|
return encoder_model, decoder_model
|
|
|
|
def prepare_config_and_inputs(self):
|
|
vit_model_tester = ViTModelTester(self)
|
|
bert_model_tester = BertModelTester(self)
|
|
encoder_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
|
|
|
|
config, pixel_values, _ = encoder_config_and_inputs
|
|
input_mask = None # TODO add once attention_mask is supported for vision models
|
|
|
|
(
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_token_type_ids,
|
|
decoder_input_mask,
|
|
decoder_sequence_labels,
|
|
decoder_token_labels,
|
|
decoder_choice_labels,
|
|
encoder_attention_mask,
|
|
_,
|
|
) = decoder_config_and_inputs
|
|
|
|
# make sure that cross attention layers are added
|
|
decoder_config.add_cross_attention = True
|
|
return {
|
|
"config": config,
|
|
"pixel_values": pixel_values,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_token_type_ids": decoder_token_type_ids,
|
|
"decoder_attention_mask": decoder_input_mask,
|
|
"decoder_sequence_labels": decoder_sequence_labels,
|
|
"decoder_token_labels": decoder_token_labels,
|
|
"decoder_choice_labels": decoder_choice_labels,
|
|
"labels": decoder_token_labels,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
class ViT2TrOCR(EncoderDecoderMixin, unittest.TestCase):
|
|
def get_encoder_decoder_model(self, config, decoder_config):
|
|
encoder_model = ViTModel(config).eval()
|
|
decoder_model = TrOCRForCausalLM(decoder_config).eval()
|
|
return encoder_model, decoder_model
|
|
|
|
def prepare_config_and_inputs(self):
|
|
model_tester_encoder = ViTModelTester(self, batch_size=13)
|
|
model_tester_decoder = TrOCRStandaloneDecoderModelTester(
|
|
self, batch_size=13, d_model=32, max_position_embeddings=512
|
|
)
|
|
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
|
|
config, pixel_values, _ = encoder_config_and_inputs
|
|
input_mask = None # TODO add once attention_mask is supported for vision models
|
|
(decoder_config, decoder_input_ids, decoder_attention_mask, _) = decoder_config_and_inputs
|
|
|
|
# make sure that cross attention layers are added
|
|
decoder_config.add_cross_attention = True
|
|
# disable cache for now
|
|
decoder_config.use_cache = False
|
|
return {
|
|
"config": config,
|
|
"pixel_values": pixel_values,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
}
|
|
|
|
# there are no published pretrained TrOCR checkpoints for now
|
|
def test_real_model_save_load_from_pretrained(self):
|
|
pass
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class TrOCRModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_processor(self):
|
|
return TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") if is_vision_available() else None
|
|
|
|
@slow
|
|
def test_inference_handwritten(self):
|
|
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten").to(torch_device)
|
|
|
|
ds = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
|
|
image = Image.open(ds[0]["file"]).convert("RGB")
|
|
|
|
processor = self.default_processor
|
|
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
|
|
|
|
# forward pass
|
|
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
|
|
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
|
|
logits = outputs.logits
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]
|
|
).to(torch_device)
|
|
|
|
self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_printed(self):
|
|
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed").to(torch_device)
|
|
|
|
ds = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
|
|
image = Image.open(ds[1]["file"]).convert("RGB")
|
|
|
|
processor = self.default_processor
|
|
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
|
|
|
|
# forward pass
|
|
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
|
|
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
|
|
logits = outputs.logits
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210]
|
|
).to(torch_device)
|
|
|
|
self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
|