mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
289 lines
10 KiB
Plaintext
289 lines
10 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# TensorFlow code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:05:56.692585Z",
|
|
"start_time": "2018-11-02T13:05:55.699169Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from extract_features import *"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:18:23.944585Z",
|
|
"start_time": "2018-11-02T13:18:23.821309Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:tensorflow:*** Example ***\n",
|
|
"INFO:tensorflow:unique_id: 0\n",
|
|
"INFO:tensorflow:tokens: [CLS] who was jim henson ? [SEP] jim henson was a puppet ##eer [SEP]\n",
|
|
"INFO:tensorflow:input_ids: 101 2040 2001 3958 27227 1029 102 3958 27227 2001 1037 13997 11510 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
|
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
|
|
"INFO:tensorflow:input_type_ids: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"data_dir=\"/Users/thomaswolf/Documents/Thomas/Code/HF/BERT/data/glue_data/MRPC/\"\n",
|
|
"vocab_file=\"/Users/thomaswolf/Documents/Thomas/Code/HF/BERT/google_models/uncased_L-12_H-768_A-12/vocab.txt\"\n",
|
|
"bert_config_file=\"/Users/thomaswolf/Documents/Thomas/Code/HF/BERT/google_models/uncased_L-12_H-768_A-12/bert_config.json\"\n",
|
|
"init_checkpoint=\"/Users/thomaswolf/Documents/Thomas/Code/HF/BERT/google_models/uncased_L-12_H-768_A-12/bert_model.ckpt\"\n",
|
|
"max_seq_length=128\n",
|
|
"input_file=\"/Users/thomaswolf/Documents/Thomas/Code/HF/BERT/pytorch-pretrained-BERT/input.txt\"\n",
|
|
"\n",
|
|
"layer_indexes = [-1]\n",
|
|
"bert_config = modeling.BertConfig.from_json_file(bert_config_file)\n",
|
|
"tokenizer = tokenization.FullTokenizer(\n",
|
|
" vocab_file=vocab_file, do_lower_case=True)\n",
|
|
"examples = read_examples(input_file)\n",
|
|
"\n",
|
|
"features = convert_examples_to_features(\n",
|
|
" examples=examples, seq_length=max_seq_length, tokenizer=tokenizer)\n",
|
|
"unique_id_to_feature = {}\n",
|
|
"for feature in features:\n",
|
|
" unique_id_to_feature[feature.unique_id] = feature"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:18:24.802620Z",
|
|
"start_time": "2018-11-02T13:18:24.764474Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x128feb7b8>) includes params argument, but params are not passed to Estimator.\n",
|
|
"WARNING:tensorflow:Using temporary folder as model directory: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpp9hntmfs\n",
|
|
"INFO:tensorflow:Using config: {'_model_dir': '/var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpp9hntmfs', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n",
|
|
"graph_options {\n",
|
|
" rewrite_options {\n",
|
|
" meta_optimizer_iterations: ONE\n",
|
|
" }\n",
|
|
"}\n",
|
|
", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x1263809e8>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=2, num_shards=1, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n",
|
|
"WARNING:tensorflow:Setting TPUConfig.num_shards==1 is an unsupported behavior. Please fix as soon as possible (leaving num_shards as None.\n",
|
|
"INFO:tensorflow:_TPUContext: eval_on_tpu True\n",
|
|
"WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2\n",
|
|
"run_config = tf.contrib.tpu.RunConfig(\n",
|
|
" master=None,\n",
|
|
" tpu_config=tf.contrib.tpu.TPUConfig(\n",
|
|
" num_shards=1,\n",
|
|
" per_host_input_for_training=is_per_host))\n",
|
|
"\n",
|
|
"model_fn = model_fn_builder(\n",
|
|
" bert_config=bert_config,\n",
|
|
" init_checkpoint=init_checkpoint,\n",
|
|
" layer_indexes=layer_indexes,\n",
|
|
" use_tpu=False,\n",
|
|
" use_one_hot_embeddings=False)\n",
|
|
"\n",
|
|
"# If TPU is not available, this will fall back to normal Estimator on CPU\n",
|
|
"# or GPU.\n",
|
|
"estimator = tf.contrib.tpu.TPUEstimator(\n",
|
|
" use_tpu=False,\n",
|
|
" model_fn=model_fn,\n",
|
|
" config=run_config,\n",
|
|
" predict_batch_size=1)\n",
|
|
"\n",
|
|
"input_fn = input_fn_builder(\n",
|
|
" features=features, seq_length=max_seq_length)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:19:20.060587Z",
|
|
"start_time": "2018-11-02T13:19:14.804525Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"INFO:tensorflow:Could not find trained model in model_dir: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpp9hntmfs, running initialization to predict.\n",
|
|
"INFO:tensorflow:Calling model_fn.\n",
|
|
"INFO:tensorflow:Running infer on CPU\n",
|
|
"INFO:tensorflow:Done calling model_fn.\n",
|
|
"INFO:tensorflow:Graph was finalized.\n",
|
|
"INFO:tensorflow:Running local_init_op.\n",
|
|
"INFO:tensorflow:Done running local_init_op.\n",
|
|
"INFO:tensorflow:prediction_loop marked as finished\n",
|
|
"INFO:tensorflow:prediction_loop marked as finished\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"all_out = []\n",
|
|
"for result in estimator.predict(input_fn, yield_single_examples=True):\n",
|
|
" unique_id = int(result[\"unique_id\"])\n",
|
|
" feature = unique_id_to_feature[unique_id]\n",
|
|
" output_json = collections.OrderedDict()\n",
|
|
" output_json[\"linex_index\"] = unique_id\n",
|
|
" all_features = []\n",
|
|
" for (i, token) in enumerate(feature.tokens):\n",
|
|
" all_layers = []\n",
|
|
" for (j, layer_index) in enumerate(layer_indexes):\n",
|
|
" layer_output = result[\"layer_output_%d\" % j]\n",
|
|
" layers = collections.OrderedDict()\n",
|
|
" layers[\"index\"] = layer_index\n",
|
|
" layers[\"values\"] = [\n",
|
|
" round(float(x), 6) for x in layer_output[i:(i + 1)].flat\n",
|
|
" ]\n",
|
|
" all_layers.append(layers)\n",
|
|
" features = collections.OrderedDict()\n",
|
|
" features[\"token\"] = token\n",
|
|
" features[\"layers\"] = all_layers\n",
|
|
" all_features.append(features)\n",
|
|
" output_json[\"features\"] = all_features\n",
|
|
" all_out.append(output_json)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:22:39.694206Z",
|
|
"start_time": "2018-11-02T13:22:39.663432Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"14"
|
|
]
|
|
},
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"len(all_out)\n",
|
|
"len(all_out[0])\n",
|
|
"all_out[0].keys()\n",
|
|
"len(all_out[0]['features'])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:23:05.752981Z",
|
|
"start_time": "2018-11-02T13:23:05.723891Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"tensorflow_output = all_out[0]['features'][0]['layers'][0]['values']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# PyTorch code"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 35,
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2018-11-02T13:24:27.644785Z",
|
|
"start_time": "2018-11-02T13:24:27.611996Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from extract_features_pytorch import *"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"hide_input": false,
|
|
"kernelspec": {
|
|
"display_name": "Python [conda env:bert]",
|
|
"language": "python",
|
|
"name": "conda-env-bert-py"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.7"
|
|
},
|
|
"toc": {
|
|
"colors": {
|
|
"hover_highlight": "#DAA520",
|
|
"running_highlight": "#FF0000",
|
|
"selected_highlight": "#FFD700"
|
|
},
|
|
"moveMenuLeft": true,
|
|
"nav_menu": {
|
|
"height": "48px",
|
|
"width": "252px"
|
|
},
|
|
"navigate_menu": true,
|
|
"number_sections": true,
|
|
"sideBar": true,
|
|
"threshold": 4,
|
|
"toc_cell": false,
|
|
"toc_section_display": "block",
|
|
"toc_window_display": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|