transformers/pytorch_transformers/tests/modeling_common_test.py

550 lines
23 KiB
Python

# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import os
import shutil
import json
import random
import unittest
import logging
import torch
from pytorch_transformers import PretrainedConfig, PreTrainedModel
from pytorch_transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from pytorch_transformers.modeling_gpt2 import GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if '_range' in key or '_std' in key:
setattr(configs_no_init, key, 0.0)
return configs_no_init
def _create_and_check_torchscript_output_attentions(tester, model_classes, config, inputs_dict):
config.output_attentions = True
_create_and_check_torchscript(tester, model_classes, config, inputs_dict)
def _create_and_check_torchscript_output_hidden_state(tester, model_classes, config, inputs_dict):
config.output_hidden_states = True
_create_and_check_torchscript(tester, model_classes, config, inputs_dict)
def _create_and_check_torchscript(tester, model_classes, config, inputs_dict):
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in model_classes:
model = model_class(config=configs_no_init)
model.eval()
inputs = inputs_dict['input_ids'] # Let's keep only input_ids
try:
torch.jit.trace(model, inputs)
except RuntimeError:
tester.parent.fail("Couldn't trace module.")
try:
traced_gpt2 = torch.jit.trace(model, inputs)
torch.jit.save(traced_gpt2, "traced_model.pt")
except RuntimeError:
tester.parent.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load("traced_model.pt")
os.remove("traced_model.pt")
except ValueError:
tester.parent.fail("Couldn't load module.")
model.eval()
loaded_model.eval()
model_params = model.parameters()
loaded_model_params = loaded_model.parameters()
models_equal = True
for p1, p2 in zip(model_params, loaded_model_params):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
tester.parent.assertTrue(models_equal)
def _create_and_check_initialization(tester, model_classes, config, inputs_dict):
configs_no_init = _config_zero_init(config)
for model_class in model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
tester.parent.assertIn(param.data.mean().item(), [0.0, 1.0],
msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
def _create_and_check_for_headmasking(tester, model_classes, config, inputs_dict):
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
for model_class in model_classes:
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config=configs_no_init)
model.eval()
# Prepare head_mask
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
head_mask = torch.ones(tester.num_hidden_layers, tester.num_attention_heads)
head_mask[0, 0] = 0
head_mask[-1, :-1] = 0
head_mask.requires_grad_(requires_grad=True)
inputs = inputs_dict.copy()
inputs['head_mask'] = head_mask
outputs = model(**inputs)
# Test that we can get a gradient back for importance score computation
output = sum(t.sum() for t in outputs[0])
output = output.sum()
output.backward()
multihead_outputs = head_mask.grad
attentions = outputs[-1]
hidden_states = outputs[-2]
# Remove Nan
tester.parent.assertIsNotNone(multihead_outputs)
tester.parent.assertEqual(len(multihead_outputs), tester.num_hidden_layers)
tester.parent.assertAlmostEqual(
attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
tester.parent.assertNotEqual(
attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
tester.parent.assertNotEqual(
attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
tester.parent.assertAlmostEqual(
attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
tester.parent.assertNotEqual(
attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
def _create_and_check_for_head_pruning(tester, model_classes, config, inputs_dict):
for model_class in model_classes:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config=config)
model.eval()
heads_to_prune = {0: list(range(1, tester.num_attention_heads)),
-1: [0]}
model.prune_heads(heads_to_prune)
outputs = model(**inputs_dict)
attentions = outputs[-1]
tester.parent.assertEqual(
attentions[0].shape[-3], 1)
tester.parent.assertEqual(
attentions[1].shape[-3], tester.num_attention_heads)
tester.parent.assertEqual(
attentions[-1].shape[-3], tester.num_attention_heads - 1)
def _create_and_check_for_attentions(tester, model_classes, config, inputs_dict):
for model_class in model_classes:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config)
model.eval()
outputs = model(**inputs_dict)
attentions = outputs[-1]
tester.parent.assertEqual(model.config.output_attentions, True)
tester.parent.assertEqual(model.config.output_hidden_states, False)
tester.parent.assertEqual(len(attentions), tester.num_hidden_layers)
tester.parent.assertListEqual(
list(attentions[0].shape[-3:]),
[tester.num_attention_heads,
tester.seq_length,
tester.key_len if hasattr(tester, 'key_len') else tester.seq_length])
out_len = len(outputs)
# Check attention is always last and order is fine
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config)
model.eval()
outputs = model(**inputs_dict)
tester.parent.assertEqual(out_len+1, len(outputs))
tester.parent.assertEqual(model.config.output_attentions, True)
tester.parent.assertEqual(model.config.output_hidden_states, True)
attentions = outputs[-1]
tester.parent.assertEqual(len(attentions), tester.num_hidden_layers)
tester.parent.assertListEqual(
list(attentions[0].shape[-3:]),
[tester.num_attention_heads,
tester.seq_length,
tester.key_len if hasattr(tester, 'key_len') else tester.seq_length])
def _create_and_check_for_hidden_states(tester, model_classes, config, inputs_dict):
for model_class in model_classes:
config.output_hidden_states = True
config.output_attentions = False
model = model_class(config)
model.eval()
outputs = model(**inputs_dict)
hidden_states = outputs[-1]
tester.parent.assertEqual(model.config.output_attentions, False)
tester.parent.assertEqual(model.config.output_hidden_states, True)
tester.parent.assertEqual(len(hidden_states), tester.num_hidden_layers + 1)
tester.parent.assertListEqual(
list(hidden_states[0].shape[-2:]),
[tester.seq_length, tester.hidden_size])
def create_and_check_commons(tester, config, inputs_dict, test_pruning=True, test_torchscript=True):
_create_and_check_initialization(tester, tester.all_model_classes, config, inputs_dict)
_create_and_check_for_attentions(tester, tester.all_model_classes, config, inputs_dict)
_create_and_check_for_headmasking(tester, tester.all_model_classes, config, inputs_dict)
_create_and_check_for_hidden_states(tester, tester.all_model_classes, config, inputs_dict)
if test_torchscript:
_create_and_check_torchscript(tester, tester.all_model_classes, config, inputs_dict)
_create_and_check_torchscript_output_attentions(tester, tester.all_model_classes, config, inputs_dict)
_create_and_check_torchscript_output_hidden_state(tester, tester.all_model_classes, config, inputs_dict)
if test_pruning:
_create_and_check_for_head_pruning(tester, tester.all_model_classes, config, inputs_dict)
def ids_tensor(shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
class ConfigTester(object):
def __init__(self, parent, config_class=None, **kwargs):
self.parent = parent
self.config_class = config_class
self.inputs_dict = kwargs
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, 'vocab_size'))
self.parent.assertTrue(hasattr(config, 'hidden_size'))
self.parent.assertTrue(hasattr(config, 'num_attention_heads'))
self.parent.assertTrue(hasattr(config, 'num_hidden_layers'))
def create_and_test_config_to_json_string(self):
config = self.config_class(**self.inputs_dict)
obj = json.loads(config.to_json_string())
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key], value)
def create_and_test_config_to_json_file(self):
config_first = self.config_class(**self.inputs_dict)
json_file_path = "/tmp/config.json"
config_first.to_json_file(json_file_path)
config_second = self.config_class.from_json_file(json_file_path)
os.remove(json_file_path)
self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())
def run_common_tests(self):
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
class GPTModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_position_ids=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
n_positions=33,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
n_choices=3,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None,
config_class=None,
base_model_class=None,
lm_head_model_class=None,
double_head_model_class=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_position_ids = use_position_ids
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_choices = n_choices
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.config_class = config_class
self.base_model_class = base_model_class
self.lm_head_model_class = lm_head_model_class
self.double_head_model_class = double_head_model_class
self.all_model_classes = (base_model_class, lm_head_model_class, double_head_model_class)
def prepare_config_and_inputs(self):
total_num_tokens = self.vocab_size
input_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_num_tokens)
position_ids = None
if self.use_position_ids:
position_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.n_positions)
token_type_ids = None
if self.use_token_type_ids:
total_voc = self.vocab_size
token_type_ids = ids_tensor([self.batch_size, self.n_choices, self.seq_length], total_voc)
mc_labels = None
lm_labels = None
mc_token_ids = None
if self.use_labels:
mc_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
lm_labels = ids_tensor([self.batch_size, self.n_choices, self.seq_length], self.num_labels)
mc_token_ids = ids_tensor([self.batch_size, self.n_choices], self.seq_length)
config = self.config_class(
vocab_size_or_config_json_file=self.vocab_size,
n_positions=self.n_positions,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
initializer_range=self.initializer_range)
return (config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids)
def create_and_check_base_model(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = self.base_model_class(config)
model.eval()
outputs = model(input_ids, position_ids, token_type_ids)
outputs = model(input_ids, position_ids)
outputs = model(input_ids)
hidden_state = outputs[0]
self.parent.assertListEqual(
list(hidden_state.size()),
[self.batch_size, self.n_choices, self.seq_length, self.hidden_size])
def create_and_check_lm_head(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = self.lm_head_model_class(config)
model.eval()
outputs = model(input_ids, position_ids, token_type_ids, lm_labels)
loss, lm_logits = outputs[:2]
total_voc = self.vocab_size
self.parent.assertListEqual(
list(lm_logits.size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
self.parent.assertListEqual(
list(loss.size()),
[])
def create_and_check_presents(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
for model_class in self.all_model_classes:
model = model_class(config)
model.eval()
outputs = model(input_ids)
presents = outputs[-1]
self.parent.assertEqual(self.num_hidden_layers, len(presents))
self.parent.assertListEqual(
list(presents[0].size()),
[2, self.batch_size * self.n_choices, self.num_attention_heads,
self.seq_length, self.hidden_size // self.num_attention_heads])
def create_and_check_double_heads(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = self.double_head_model_class(config)
model.eval()
outputs = model(input_ids, mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels,
token_type_ids=token_type_ids, position_ids=position_ids)
lm_loss, mc_loss, lm_logits, mc_logits = outputs[:4]
loss = [lm_loss, mc_loss]
total_voc = self.vocab_size
self.parent.assertListEqual(
list(lm_logits.size()),
[self.batch_size, self.n_choices, self.seq_length, total_voc])
self.parent.assertListEqual(
list(mc_logits.size()),
[self.batch_size, self.n_choices])
self.parent.assertListEqual(
[list(l.size()) for l in loss],
[[], []])
def create_and_check_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
for model_name in list(self.base_model_class.pretrained_model_archive_map.keys())[:1]:
model = self.base_model_class.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.parent.assertIsNotNone(model)
def create_and_check_commons(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
inputs_dict = {'input_ids': input_ids}
create_and_check_commons(self, config, inputs_dict)
def run_common_tests(self, test_presents=False):
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_base_model(*config_and_inputs)
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_lm_head(*config_and_inputs)
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_double_heads(*config_and_inputs)
if test_presents:
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_presents(*config_and_inputs)
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_commons(*config_and_inputs)
def run_slow_tests(self):
self.create_and_check_model_from_pretrained()
class ModelUtilsTest(unittest.TestCase):
def test_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
config = BertConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, PretrainedConfig)
model = BertModel.from_pretrained(model_name)
model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, PreTrainedModel)
for value in loading_info.values():
self.assertEqual(len(value), 0)
config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(model.config, config)
def test_resize_tokens_embeddings(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
config = BertConfig.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
cloned_embeddings = model.embeddings.word_embeddings.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model.embeddings.word_embeddings.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size)
self.assertEqual(model.config.vocab_size, model_vocab_size)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model.embeddings.word_embeddings.weight.shape[0], cloned_embeddings.shape[0])
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model.embeddings.word_embeddings.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_tie_model_weights(self):
logging.basicConfig(level=logging.INFO)
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_name in list(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
config = GPT2Config.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
# Get the embeddings and decoding layer
embeddings = model.transformer.wte
decoding = model.lm_head
# Check that the embedding layer and decoding layer are the same in size and in value
self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
self.assertTrue(check_same_values(embeddings, decoding))
# Check that after modification, they remain the same.
embeddings.weight.data.div_(2)
# Check that the embedding layer and decoding layer are the same in size and in value
self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
self.assertTrue(check_same_values(embeddings, decoding))
# Check that after modification, they remain the same.
decoding.weight.data.div_(4)
# Check that the embedding layer and decoding layer are the same in size and in value
self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model.resize_token_embeddings(config.vocab_size + 10)
decoding.weight.data.mul_(20)
# Check that the embedding layer and decoding layer are the same in size and in value
self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))
if __name__ == "__main__":
unittest.main()