mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-10 08:10:05 +06:00

* Add first draft * Use appropriate gelu function * More improvements * More improvements * More improvements * Convert checkpoint * More improvements * Improve docs, remove print statements * More improvements * Add link * remove unused masking function * begin tokenizer * do_lower_case * debug * set split_special_tokens=True * Remove script * Fix style * Fix rebase * Use same design as CLIP * Add fast tokenizer * Add SiglipTokenizer to init, remove extra_ids * Improve conversion script * Use smaller inputs in conversion script * Update conversion script * More improvements * Add processor to conversion script * Add tests * Remove print statements * Add tokenizer tests * Fix more tests * More improvements related to weight initialization * More improvements * Make more tests pass * More improvements * More improvements * Add copied from * Add canonicalize_text * Enable fast tokenizer tests * More improvements * Fix most slow tokenizer tests * Address comments * Fix style * Remove script * Address some comments * Add copied from to tests * Add more copied from * Add more copied from * Add more copied from * Remove is_flax_available * More updates * Address comment * Remove SiglipTokenizerFast for now * Add caching * Remove umt5 test * Add canonicalize_text inside _tokenize, thanks Arthur * Fix image processor tests * Skip tests which are not applicable * Skip test_initialization * More improvements * Compare pixel values * Fix doc tests, add integration test * Add do_normalize * Remove causal mask and leverage ignore copy * Fix attention_mask * Fix remaining tests * Fix dummies * Rename temperature and bias * Address comments * Add copied from to tokenizer tests * Add SiglipVisionModel to auto mapping * Add copied from to image processor tests * Improve doc * Remove SiglipVisionModel from index * Address comments * Improve docs * Simplify config * Add first draft * Make it like mistral * More improvements * Fix attention_mask * Fix output_attentions * Add note in docs * Convert multilingual model * Convert large checkpoint * Convert more checkpoints * Add pipeline support, correct image_mean and image_std * Use padding=max_length by default * Make processor like llava * Add code snippet * Convert more checkpoints * Set keep_punctuation_string=None as in OpenCLIP * Set normalized=False for special tokens * Fix doc test * Update integration test * Add figure * Update organization * Happy new year * Use AutoModel everywhere --------- Co-authored-by: patil-suraj <surajp815@gmail.com>
126 lines
4.5 KiB
Python
126 lines
4.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import SiglipImageProcessor
|
|
|
|
|
|
class SiglipImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
size = size if size is not None else {"height": 18, "width": 18}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest with CLIP->Siglip
|
|
class SiglipImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = SiglipImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = SiglipImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
# Ignore copy
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "resample"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
|
|
# Ignore copy
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
|
|
|
|
image_processor = self.image_processing_class.from_dict(
|
|
self.image_processor_dict, size={"height": 84, "width": 84}
|
|
)
|
|
self.assertEqual(image_processor.size, {"height": 84, "width": 84})
|
|
|
|
@unittest.skip("not supported")
|
|
# Ignore copy
|
|
def test_call_numpy_4_channels(self):
|
|
pass
|