transformers/tests/models/luke/test_tokenization_luke.py
Arthur 2da8853775
🚨🚨 🚨🚨 [Tokenizer] attemp to fix add_token issues🚨🚨 🚨🚨 (#23909)
* fix test for bart. Order is correct now let's skip BPEs

* ouf

* styling

* fix bert....

* slow refactoring

* current updates

* massive refactoring

* update

* NICE!

* update to see where I am at

* updates

* update

* update

* revert

* updates

* updates

* start supporting legacy_save

* styling

* big update

* revert some changes

* nits

* nniiiiiice

* small fixes

* kinda fix t5 with new behaviour

* major update

* fixup

* fix copies

* today's updates

* fix byt5

* upfate

* update

* update

* updates

* update vocab size test

* Barthez does not use not need the fairseq offset ids

* super calll must be after

* calll super

* move all super init

* move other super init

* fixup

* nits

* more fixes

* nits

* more fixes

* nits

* more fix

* remove useless files

* ouch all of them are affected

* and more!

* small imporvements

* no more sanitize token

* more changes around unique no split tokens

* partially fix more things

* keep legacy save but add warning

* so... more fixes

* updates

* guess deberta tokenizer could be nuked

* fixup

* fixup did some bad things

* nuke it if it breaks

* remove prints and pretrain fast from slow with new format.

* fixups

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fiou

* nit

* by default specials should not be normalized?

* update

* remove brakpoint

* updates

* a lot of updates

* fixup

* fixes revert some changes to match fast

* small nits

* that makes it cleaner

* fix camembert accordingly

* update

* some lest breaking changes

* update

* fixup

* fix byt5 and whisper mostly

* some more fixes, canine's byte vocab

* fix gpt2

* fix most of the perceiver tests (4 left)

* fix layout lmv3

* fixup

* fix copies for gpt2 style

* make sure to only warn once

* fix perciever and gpt2 tests

* some more backward compatibility: also read special tokens map because some ppl use it........////.....

* fixup

* add else when reading

* nits

* fresh updates

* fix copies

* will this make everything faster?

* fixes

* more fixes

* update

* more fixes

* fixup

* is the source of truth right?

* sorry camembert for the troubles

* current updates

* fixup

* update led

* update

* fix regression

* fix single word

* more model specific fixes

* fix t5 tests

* fixup

* more comments

* update

* fix nllb

* rstrip removed

* small fixes

* better handle additional_special_tokens and vocab sizes

* fixing

* styling

* fix 4 / 21

* fixup

* fix nlbb's tests

* some fixes

* fix t5

* fixes

* style

* fix canine tests

* damn this is nice

* nits

* m2m100 nit

* fixups

* fixes!

* fixup

* stash

* fix merge

* revert bad change

* fixup

* correct order for code Llama

* fix speecht5 post merge

* styling

* revert source of 11 fails

* small nits

* all changes in one go

* fnet hack

* fix 2 more tests

* update based on main branch of tokenizers

* fixup

* fix VITS issues

* more fixes

* fix mgp test

* fix camembert issues

* oups camembert still has 2 failing tests

* mluke fixes

* decode fixes

* small nits

* nits

* fix llama and vits

* fix camembert

* smal nits

* more fixes when initialising a fast from a slow and etc

* fix one of the last test

* fix CPM tokenizer test

* fixups

* fix pop2piano

* fixup

* ⚠️ Change tokenizers required version ⚠️

* ⚠️ Change tokenizers required version ⚠️

* "tokenizers>=0.14,<0.15", don't forget smaller than

* fix musicgen tests and pretraiendtokenizerfast

* fix owlvit and all

* update t5

* fix 800 red

* fix tests

* fix the fix of the fix of t5

* styling

* documentation nits

* cache _added_tokens_encoder

* fixups

* Nit

* fix red tests

* one last nit!

* make eveything a lot simpler

* Now it's over 😉

* few small nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates that work for now

* tests that should no be skipped / changed and fixed next

* fixup

* i am ashamed

* pushe the fix

* update

* fixups

* nits

* fix added_tokens_encoder

* fix canine test

* fix pegasus vocab

* fix transfoXL

* fixup

* whisper needs to be fixed for train new

* pegasus nits

* more pegasus fixes

* minor update

* better error message in failed test

* fix whisper failing test

* fix whisper failing test

* fix pegasus

* fixup

* fix **** pegasus

* reset things

* remove another file

* attempts to fix the strange custome encoder and offset

* nits here and there

* update

* fixup

* nit

* fix the whisper test

* nits nits

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates based on review

* some small update to potentially remove

* nits

* import rlu cache

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* move warning to `from_pretrained`

* update tests results now that the special tokens are always added

---------

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-18 20:28:36 +02:00

668 lines
29 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Tuple
from transformers import AddedToken, LukeTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt")
SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json")
class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = LukeTokenizer
test_rust_tokenizer = False
from_pretrained_kwargs = {"cls_token": "<s>"}
def setUp(self):
super().setUp()
self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"}
def get_tokenizer(self, task=None, **kwargs):
kwargs.update(self.special_tokens_map)
tokenizer = LukeTokenizer(
vocab_file=SAMPLE_VOCAB,
merges_file=SAMPLE_MERGE_FILE,
entity_vocab_file=SAMPLE_ENTITY_VOCAB,
task=task,
**kwargs,
)
return tokenizer
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
text = "lower newer"
bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_text_from_decode = tokenizer.encode(
"sequence builders", add_special_tokens=True, add_prefix_space=False
)
encoded_pair_from_decode = tokenizer.encode(
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
self.assertEqual(encoded_sentence, encoded_text_from_decode)
self.assertEqual(encoded_pair, encoded_pair_from_decode)
def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]:
txt = "Beyonce lives in Los Angeles"
ids = tokenizer.encode(txt, add_special_tokens=False)
return txt, ids
def test_space_encoding(self):
tokenizer = self.get_tokenizer()
sequence = "Encode this sequence."
space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]
# Testing encoder arguments
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertNotEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
self.assertEqual(first_char, space_encoding)
tokenizer.add_special_tokens({"bos_token": "<s>"})
encoded = tokenizer.encode(sequence, add_special_tokens=True)
first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
self.assertNotEqual(first_char, space_encoding)
# Testing spaces after special tokens
mask = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
) # mask token has a left space
mask_ind = tokenizer.convert_tokens_to_ids(mask)
sequence = "Encode <mask> sequence"
sequence_nospace = "Encode <mask>sequence"
encoded = tokenizer.encode(sequence)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertEqual(first_char, space_encoding)
encoded = tokenizer.encode(sequence_nospace)
mask_loc = encoded.index(mask_ind)
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
self.assertNotEqual(first_char, space_encoding)
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
def test_padding_entity_inputs(self):
tokenizer = self.get_tokenizer()
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
span = (15, 34)
pad_id = tokenizer.entity_vocab["[PAD]"]
mask_id = tokenizer.entity_vocab["[MASK]"]
encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True)
self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]])
# test with a sentence with no entity
encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True)
self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]])
def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer()
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
spans = [(15, 34)]
entities = ["East Asian language"]
with self.assertRaises(ValueError):
tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
with self.assertRaises(ValueError):
tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
with self.assertRaises(ValueError):
tokenizer(sentence, entities=[0], entity_spans=spans)
with self.assertRaises(ValueError):
tokenizer(sentence, entities=entities, entity_spans=[0])
with self.assertRaises(ValueError):
tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)])
def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer(task="entity_classification")
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
span = (15, 34)
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[span, span])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[0])
def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer(task="entity_pair_classification")
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
# head and tail information
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[0, 0])
def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self):
tokenizer = self.get_tokenizer(task="entity_span_classification")
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[])
with self.assertRaises(ValueError):
tokenizer(sentence, entity_spans=[0, 0, 0])
@slow
@require_torch
class LukeTokenizerIntegrationTests(unittest.TestCase):
tokenizer_class = LukeTokenizer
from_pretrained_kwargs = {"cls_token": "<s>"}
def setUp(self):
super().setUp()
def test_single_text_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"]
spans = [(9, 21), (30, 38), (39, 42)]
encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she")
self.assertEqual(
encoding["entity_ids"],
[
tokenizer.entity_vocab["Ana Ivanovic"],
tokenizer.entity_vocab["Thursday"],
tokenizer.entity_vocab["[UNK]"],
],
)
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
]
)
# fmt: on
def test_single_text_only_entity_spans_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
spans = [(9, 21), (30, 38), (39, 42)]
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she")
mask_id = tokenizer.entity_vocab["[MASK]"]
self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id])
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ],
[9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ]
]
)
# fmt: on
def test_single_text_padding_pytorch_tensors(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"]
spans = [(9, 21), (30, 38), (39, 42)]
encoding = tokenizer(
sentence,
entities=entities,
entity_spans=spans,
return_token_type_ids=True,
padding="max_length",
max_length=30,
max_entity_length=16,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
def test_text_pair_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
sentence = "Top seed Ana Ivanovic said on Thursday"
sentence_pair = "She could hardly believe her luck."
entities = ["Ana Ivanovic", "Thursday"]
entities_pair = ["Dummy Entity"]
spans = [(9, 21), (30, 38)]
spans_pair = [(0, 3)]
encoding = tokenizer(
sentence,
sentence_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=spans,
entity_spans_pair=spans_pair,
return_token_type_ids=True,
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She")
self.assertEqual(
encoding["entity_ids"],
[
tokenizer.entity_vocab["Ana Ivanovic"],
tokenizer.entity_vocab["Thursday"],
tokenizer.entity_vocab["[UNK]"],
],
)
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
]
)
# fmt: on
def test_text_pair_only_entity_spans_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
sentence = "Top seed Ana Ivanovic said on Thursday"
sentence_pair = "She could hardly believe her luck."
spans = [(9, 21), (30, 38)]
spans_pair = [(0, 3)]
encoding = tokenizer(
sentence,
sentence_pair,
entity_spans=spans,
entity_spans_pair=spans_pair,
return_token_type_ids=True,
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
)
self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She")
mask_id = tokenizer.entity_vocab["[MASK]"]
self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id])
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
]
)
# fmt: on
def test_text_pair_padding_pytorch_tensors(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
sentence = "Top seed Ana Ivanovic said on Thursday"
sentence_pair = "She could hardly believe her luck."
entities = ["Ana Ivanovic", "Thursday"]
entities_pair = ["Dummy Entity"]
spans = [(9, 21), (30, 38)]
spans_pair = [(0, 3)]
encoding = tokenizer(
sentence,
sentence_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=spans,
entity_spans_pair=spans_pair,
return_token_type_ids=True,
padding="max_length",
max_length=30,
max_entity_length=16,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
def test_entity_classification_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification")
sentence = (
"Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped"
" the new world number one avoid a humiliating second- round exit at Wimbledon ."
)
span = (39, 42)
encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True)
# test words
self.assertEqual(len(encoding["input_ids"]), 42)
self.assertEqual(len(encoding["attention_mask"]), 42)
self.assertEqual(len(encoding["token_type_ids"]), 42)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous"
" netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>"
)
# test entities
self.assertEqual(encoding["entity_ids"], [2])
self.assertEqual(encoding["entity_attention_mask"], [1])
self.assertEqual(encoding["entity_token_type_ids"], [0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
)
# fmt: on
def test_entity_classification_padding_pytorch_tensors(self):
tokenizer = LukeTokenizer.from_pretrained(
"studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True
)
sentence = (
"Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped"
" the new world number one avoid a humiliating second- round exit at Wimbledon ."
)
# entity information
span = (39, 42)
encoding = tokenizer(
sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt"
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 512))
self.assertEqual(encoding["attention_mask"].shape, (1, 512))
self.assertEqual(encoding["token_type_ids"].shape, (1, 512))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 1))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1))
self.assertEqual(
encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length)
)
def test_entity_pair_classification_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained(
"studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True
)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
# head and tail information
spans = [(9, 21), (39, 42)]
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False),
"<ent> Ana Ivanovic<ent>",
)
self.assertEqual(
tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>"
)
self.assertEqual(encoding["entity_ids"], [2, 3])
self.assertEqual(encoding["entity_attention_mask"], [1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
]
)
# fmt: on
def test_entity_pair_classification_padding_pytorch_tensors(self):
tokenizer = LukeTokenizer.from_pretrained(
"studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True
)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
# head and tail information
spans = [(9, 21), (39, 42)]
encoding = tokenizer(
sentence,
entity_spans=spans,
return_token_type_ids=True,
padding="max_length",
max_length=30,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 2))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2))
self.assertEqual(
encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length)
)
def test_entity_span_classification_no_padding_or_truncation(self):
tokenizer = LukeTokenizer.from_pretrained(
"studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True
)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
spans = [(0, 8), (9, 21), (39, 42)]
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
self.assertEqual(
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
"<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>",
)
self.assertEqual(encoding["entity_ids"], [2, 2, 2])
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
# fmt: off
self.assertEqual(
encoding["entity_position_ids"],
[
[1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
]
)
# fmt: on
self.assertEqual(encoding["entity_start_positions"], [1, 3, 9])
self.assertEqual(encoding["entity_end_positions"], [2, 5, 9])
def test_entity_span_classification_padding_pytorch_tensors(self):
tokenizer = LukeTokenizer.from_pretrained(
"studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True
)
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
spans = [(0, 8), (9, 21), (39, 42)]
encoding = tokenizer(
sentence,
entity_spans=spans,
return_token_type_ids=True,
padding="max_length",
max_length=30,
max_entity_length=16,
return_tensors="pt",
)
# test words
self.assertEqual(encoding["input_ids"].shape, (1, 30))
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
# test entities
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
self.assertEqual(encoding["entity_start_positions"].shape, (1, 16))
self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))