mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 09:40:06 +06:00

* fix test for bart. Order is correct now let's skip BPEs * ouf * styling * fix bert.... * slow refactoring * current updates * massive refactoring * update * NICE! * update to see where I am at * updates * update * update * revert * updates * updates * start supporting legacy_save * styling * big update * revert some changes * nits * nniiiiiice * small fixes * kinda fix t5 with new behaviour * major update * fixup * fix copies * today's updates * fix byt5 * upfate * update * update * updates * update vocab size test * Barthez does not use not need the fairseq offset ids * super calll must be after * calll super * move all super init * move other super init * fixup * nits * more fixes * nits * more fixes * nits * more fix * remove useless files * ouch all of them are affected * and more! * small imporvements * no more sanitize token * more changes around unique no split tokens * partially fix more things * keep legacy save but add warning * so... more fixes * updates * guess deberta tokenizer could be nuked * fixup * fixup did some bad things * nuke it if it breaks * remove prints and pretrain fast from slow with new format. * fixups * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * fiou * nit * by default specials should not be normalized? * update * remove brakpoint * updates * a lot of updates * fixup * fixes revert some changes to match fast * small nits * that makes it cleaner * fix camembert accordingly * update * some lest breaking changes * update * fixup * fix byt5 and whisper mostly * some more fixes, canine's byte vocab * fix gpt2 * fix most of the perceiver tests (4 left) * fix layout lmv3 * fixup * fix copies for gpt2 style * make sure to only warn once * fix perciever and gpt2 tests * some more backward compatibility: also read special tokens map because some ppl use it........////..... * fixup * add else when reading * nits * fresh updates * fix copies * will this make everything faster? * fixes * more fixes * update * more fixes * fixup * is the source of truth right? * sorry camembert for the troubles * current updates * fixup * update led * update * fix regression * fix single word * more model specific fixes * fix t5 tests * fixup * more comments * update * fix nllb * rstrip removed * small fixes * better handle additional_special_tokens and vocab sizes * fixing * styling * fix 4 / 21 * fixup * fix nlbb's tests * some fixes * fix t5 * fixes * style * fix canine tests * damn this is nice * nits * m2m100 nit * fixups * fixes! * fixup * stash * fix merge * revert bad change * fixup * correct order for code Llama * fix speecht5 post merge * styling * revert source of 11 fails * small nits * all changes in one go * fnet hack * fix 2 more tests * update based on main branch of tokenizers * fixup * fix VITS issues * more fixes * fix mgp test * fix camembert issues * oups camembert still has 2 failing tests * mluke fixes * decode fixes * small nits * nits * fix llama and vits * fix camembert * smal nits * more fixes when initialising a fast from a slow and etc * fix one of the last test * fix CPM tokenizer test * fixups * fix pop2piano * fixup * ⚠️ Change tokenizers required version ⚠️ * ⚠️ Change tokenizers required version ⚠️ * "tokenizers>=0.14,<0.15", don't forget smaller than * fix musicgen tests and pretraiendtokenizerfast * fix owlvit and all * update t5 * fix 800 red * fix tests * fix the fix of the fix of t5 * styling * documentation nits * cache _added_tokens_encoder * fixups * Nit * fix red tests * one last nit! * make eveything a lot simpler * Now it's over 😉 * few small nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates that work for now * tests that should no be skipped / changed and fixed next * fixup * i am ashamed * pushe the fix * update * fixups * nits * fix added_tokens_encoder * fix canine test * fix pegasus vocab * fix transfoXL * fixup * whisper needs to be fixed for train new * pegasus nits * more pegasus fixes * minor update * better error message in failed test * fix whisper failing test * fix whisper failing test * fix pegasus * fixup * fix **** pegasus * reset things * remove another file * attempts to fix the strange custome encoder and offset * nits here and there * update * fixup * nit * fix the whisper test * nits nits * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * updates based on review * some small update to potentially remove * nits * import rlu cache * Update src/transformers/tokenization_utils_base.py Co-authored-by: Lysandre Debut <hi@lysand.re> * move warning to `from_pretrained` * update tests results now that the special tokens are always added --------- Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Lysandre Debut <hi@lysand.re>
668 lines
29 KiB
Python
668 lines
29 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from typing import Tuple
|
|
|
|
from transformers import AddedToken, LukeTokenizer
|
|
from transformers.testing_utils import get_tests_dir, require_torch, slow
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
|
|
SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt")
|
|
SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json")
|
|
|
|
|
|
class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
|
|
tokenizer_class = LukeTokenizer
|
|
test_rust_tokenizer = False
|
|
from_pretrained_kwargs = {"cls_token": "<s>"}
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"}
|
|
|
|
def get_tokenizer(self, task=None, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
tokenizer = LukeTokenizer(
|
|
vocab_file=SAMPLE_VOCAB,
|
|
merges_file=SAMPLE_MERGE_FILE,
|
|
entity_vocab_file=SAMPLE_ENTITY_VOCAB,
|
|
task=task,
|
|
**kwargs,
|
|
)
|
|
return tokenizer
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer"
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = self.get_tokenizer()
|
|
text = "lower newer"
|
|
bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"]
|
|
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large")
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_text_from_decode = tokenizer.encode(
|
|
"sequence builders", add_special_tokens=True, add_prefix_space=False
|
|
)
|
|
encoded_pair_from_decode = tokenizer.encode(
|
|
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False
|
|
)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
self.assertEqual(encoded_sentence, encoded_text_from_decode)
|
|
self.assertEqual(encoded_pair, encoded_pair_from_decode)
|
|
|
|
def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]:
|
|
txt = "Beyonce lives in Los Angeles"
|
|
ids = tokenizer.encode(txt, add_special_tokens=False)
|
|
return txt, ids
|
|
|
|
def test_space_encoding(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
sequence = "Encode this sequence."
|
|
space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]]
|
|
|
|
# Testing encoder arguments
|
|
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
|
|
self.assertNotEqual(first_char, space_encoding)
|
|
|
|
encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0]
|
|
self.assertEqual(first_char, space_encoding)
|
|
|
|
tokenizer.add_special_tokens({"bos_token": "<s>"})
|
|
encoded = tokenizer.encode(sequence, add_special_tokens=True)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0]
|
|
self.assertNotEqual(first_char, space_encoding)
|
|
|
|
# Testing spaces after special tokens
|
|
mask = "<mask>"
|
|
tokenizer.add_special_tokens(
|
|
{"mask_token": AddedToken(mask, lstrip=True, rstrip=False)}
|
|
) # mask token has a left space
|
|
mask_ind = tokenizer.convert_tokens_to_ids(mask)
|
|
|
|
sequence = "Encode <mask> sequence"
|
|
sequence_nospace = "Encode <mask>sequence"
|
|
|
|
encoded = tokenizer.encode(sequence)
|
|
mask_loc = encoded.index(mask_ind)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
|
|
self.assertEqual(first_char, space_encoding)
|
|
|
|
encoded = tokenizer.encode(sequence_nospace)
|
|
mask_loc = encoded.index(mask_ind)
|
|
first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0]
|
|
self.assertNotEqual(first_char, space_encoding)
|
|
|
|
def test_pretokenized_inputs(self):
|
|
pass
|
|
|
|
def test_embeded_special_tokens(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
sentence = "A, <mask> AllenNLP sentence."
|
|
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
|
|
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
|
|
|
|
# token_type_ids should put 0 everywhere
|
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
|
|
|
|
# token_type_ids should put 0 everywhere
|
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
|
|
|
|
# attention_mask should put 1 everywhere, so sum over length should be 1
|
|
self.assertEqual(
|
|
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
|
|
)
|
|
|
|
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
|
|
|
|
# Rust correctly handles the space before the mask while python doesnt
|
|
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
|
|
|
|
self.assertSequenceEqual(
|
|
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
|
|
)
|
|
|
|
def test_padding_entity_inputs(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
|
|
span = (15, 34)
|
|
pad_id = tokenizer.entity_vocab["[PAD]"]
|
|
mask_id = tokenizer.entity_vocab["[MASK]"]
|
|
|
|
encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True)
|
|
self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]])
|
|
|
|
# test with a sentence with no entity
|
|
encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True)
|
|
self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]])
|
|
|
|
def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self):
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
|
|
spans = [(15, 34)]
|
|
entities = ["East Asian language"]
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entities=[0], entity_spans=spans)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entities=entities, entity_spans=[0])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)])
|
|
|
|
def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self):
|
|
tokenizer = self.get_tokenizer(task="entity_classification")
|
|
|
|
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
|
|
span = (15, 34)
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[span, span])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[0])
|
|
|
|
def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self):
|
|
tokenizer = self.get_tokenizer(task="entity_pair_classification")
|
|
|
|
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
|
|
# head and tail information
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[0, 0])
|
|
|
|
def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self):
|
|
tokenizer = self.get_tokenizer(task="entity_span_classification")
|
|
|
|
sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan."
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[])
|
|
|
|
with self.assertRaises(ValueError):
|
|
tokenizer(sentence, entity_spans=[0, 0, 0])
|
|
|
|
|
|
@slow
|
|
@require_torch
|
|
class LukeTokenizerIntegrationTests(unittest.TestCase):
|
|
tokenizer_class = LukeTokenizer
|
|
from_pretrained_kwargs = {"cls_token": "<s>"}
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def test_single_text_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"]
|
|
spans = [(9, 21), (30, 38), (39, 42)]
|
|
|
|
encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True)
|
|
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
|
|
)
|
|
self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she")
|
|
|
|
self.assertEqual(
|
|
encoding["entity_ids"],
|
|
[
|
|
tokenizer.entity_vocab["Ana Ivanovic"],
|
|
tokenizer.entity_vocab["Thursday"],
|
|
tokenizer.entity_vocab["[UNK]"],
|
|
],
|
|
)
|
|
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_single_text_only_entity_spans_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
spans = [(9, 21), (30, 38), (39, 42)]
|
|
|
|
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
|
|
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
|
|
)
|
|
self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she")
|
|
|
|
mask_id = tokenizer.entity_vocab["[MASK]"]
|
|
self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id])
|
|
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ],
|
|
[9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ]
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_single_text_padding_pytorch_tensors(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"]
|
|
spans = [(9, 21), (30, 38), (39, 42)]
|
|
|
|
encoding = tokenizer(
|
|
sentence,
|
|
entities=entities,
|
|
entity_spans=spans,
|
|
return_token_type_ids=True,
|
|
padding="max_length",
|
|
max_length=30,
|
|
max_entity_length=16,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# test words
|
|
self.assertEqual(encoding["input_ids"].shape, (1, 30))
|
|
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
|
|
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
|
|
|
|
# test entities
|
|
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
|
|
|
|
def test_text_pair_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday"
|
|
sentence_pair = "She could hardly believe her luck."
|
|
entities = ["Ana Ivanovic", "Thursday"]
|
|
entities_pair = ["Dummy Entity"]
|
|
spans = [(9, 21), (30, 38)]
|
|
spans_pair = [(0, 3)]
|
|
|
|
encoding = tokenizer(
|
|
sentence,
|
|
sentence_pair,
|
|
entities=entities,
|
|
entities_pair=entities_pair,
|
|
entity_spans=spans,
|
|
entity_spans_pair=spans_pair,
|
|
return_token_type_ids=True,
|
|
)
|
|
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
|
|
)
|
|
self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She")
|
|
|
|
self.assertEqual(
|
|
encoding["entity_ids"],
|
|
[
|
|
tokenizer.entity_vocab["Ana Ivanovic"],
|
|
tokenizer.entity_vocab["Thursday"],
|
|
tokenizer.entity_vocab["[UNK]"],
|
|
],
|
|
)
|
|
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_text_pair_only_entity_spans_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday"
|
|
sentence_pair = "She could hardly believe her luck."
|
|
spans = [(9, 21), (30, 38)]
|
|
spans_pair = [(0, 3)]
|
|
|
|
encoding = tokenizer(
|
|
sentence,
|
|
sentence_pair,
|
|
entity_spans=spans,
|
|
entity_spans_pair=spans_pair,
|
|
return_token_type_ids=True,
|
|
)
|
|
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic"
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday"
|
|
)
|
|
self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She")
|
|
|
|
mask_id = tokenizer.entity_vocab["[MASK]"]
|
|
self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id])
|
|
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_text_pair_padding_pytorch_tensors(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday"
|
|
sentence_pair = "She could hardly believe her luck."
|
|
entities = ["Ana Ivanovic", "Thursday"]
|
|
entities_pair = ["Dummy Entity"]
|
|
spans = [(9, 21), (30, 38)]
|
|
spans_pair = [(0, 3)]
|
|
|
|
encoding = tokenizer(
|
|
sentence,
|
|
sentence_pair,
|
|
entities=entities,
|
|
entities_pair=entities_pair,
|
|
entity_spans=spans,
|
|
entity_spans_pair=spans_pair,
|
|
return_token_type_ids=True,
|
|
padding="max_length",
|
|
max_length=30,
|
|
max_entity_length=16,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# test words
|
|
self.assertEqual(encoding["input_ids"].shape, (1, 30))
|
|
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
|
|
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
|
|
|
|
# test entities
|
|
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
|
|
|
|
def test_entity_classification_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification")
|
|
sentence = (
|
|
"Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped"
|
|
" the new world number one avoid a humiliating second- round exit at Wimbledon ."
|
|
)
|
|
span = (39, 42)
|
|
|
|
encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True)
|
|
|
|
# test words
|
|
self.assertEqual(len(encoding["input_ids"]), 42)
|
|
self.assertEqual(len(encoding["attention_mask"]), 42)
|
|
self.assertEqual(len(encoding["token_type_ids"]), 42)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous"
|
|
" netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>"
|
|
)
|
|
|
|
# test entities
|
|
self.assertEqual(encoding["entity_ids"], [2])
|
|
self.assertEqual(encoding["entity_attention_mask"], [1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_entity_classification_padding_pytorch_tensors(self):
|
|
tokenizer = LukeTokenizer.from_pretrained(
|
|
"studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True
|
|
)
|
|
sentence = (
|
|
"Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped"
|
|
" the new world number one avoid a humiliating second- round exit at Wimbledon ."
|
|
)
|
|
# entity information
|
|
span = (39, 42)
|
|
|
|
encoding = tokenizer(
|
|
sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt"
|
|
)
|
|
|
|
# test words
|
|
self.assertEqual(encoding["input_ids"].shape, (1, 512))
|
|
self.assertEqual(encoding["attention_mask"].shape, (1, 512))
|
|
self.assertEqual(encoding["token_type_ids"].shape, (1, 512))
|
|
|
|
# test entities
|
|
self.assertEqual(encoding["entity_ids"].shape, (1, 1))
|
|
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1))
|
|
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1))
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length)
|
|
)
|
|
|
|
def test_entity_pair_classification_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained(
|
|
"studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True
|
|
)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
# head and tail information
|
|
spans = [(9, 21), (39, 42)]
|
|
|
|
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
|
|
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False),
|
|
"<ent> Ana Ivanovic<ent>",
|
|
)
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>"
|
|
)
|
|
|
|
self.assertEqual(encoding["entity_ids"], [2, 3])
|
|
self.assertEqual(encoding["entity_attention_mask"], [1, 1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0, 0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
def test_entity_pair_classification_padding_pytorch_tensors(self):
|
|
tokenizer = LukeTokenizer.from_pretrained(
|
|
"studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True
|
|
)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
# head and tail information
|
|
spans = [(9, 21), (39, 42)]
|
|
|
|
encoding = tokenizer(
|
|
sentence,
|
|
entity_spans=spans,
|
|
return_token_type_ids=True,
|
|
padding="max_length",
|
|
max_length=30,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# test words
|
|
self.assertEqual(encoding["input_ids"].shape, (1, 30))
|
|
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
|
|
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
|
|
|
|
# test entities
|
|
self.assertEqual(encoding["entity_ids"].shape, (1, 2))
|
|
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2))
|
|
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2))
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length)
|
|
)
|
|
|
|
def test_entity_span_classification_no_padding_or_truncation(self):
|
|
tokenizer = LukeTokenizer.from_pretrained(
|
|
"studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True
|
|
)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
spans = [(0, 8), (9, 21), (39, 42)]
|
|
|
|
encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True)
|
|
|
|
self.assertEqual(
|
|
tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False),
|
|
"<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>",
|
|
)
|
|
|
|
self.assertEqual(encoding["entity_ids"], [2, 2, 2])
|
|
self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1])
|
|
self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0])
|
|
# fmt: off
|
|
self.assertEqual(
|
|
encoding["entity_position_ids"],
|
|
[
|
|
[1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
]
|
|
)
|
|
# fmt: on
|
|
self.assertEqual(encoding["entity_start_positions"], [1, 3, 9])
|
|
self.assertEqual(encoding["entity_end_positions"], [2, 5, 9])
|
|
|
|
def test_entity_span_classification_padding_pytorch_tensors(self):
|
|
tokenizer = LukeTokenizer.from_pretrained(
|
|
"studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True
|
|
)
|
|
sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck."
|
|
spans = [(0, 8), (9, 21), (39, 42)]
|
|
|
|
encoding = tokenizer(
|
|
sentence,
|
|
entity_spans=spans,
|
|
return_token_type_ids=True,
|
|
padding="max_length",
|
|
max_length=30,
|
|
max_entity_length=16,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# test words
|
|
self.assertEqual(encoding["input_ids"].shape, (1, 30))
|
|
self.assertEqual(encoding["attention_mask"].shape, (1, 30))
|
|
self.assertEqual(encoding["token_type_ids"].shape, (1, 30))
|
|
|
|
# test entities
|
|
self.assertEqual(encoding["entity_ids"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length))
|
|
self.assertEqual(encoding["entity_start_positions"].shape, (1, 16))
|
|
self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))
|