transformers/tests/models/clvp/test_feature_extraction_clvp.py
Susnato Dhar 7e9f10ac94
Add CLVP (#24745)
* init commit

* attention arch done except rotary emb

* rotary emb done

* text encoder working

* outputs matching

* arch first pass done

* make commands done, tests and docs remaining

* all tests passed, only docs remaining

* docs done

* doc-builder fix

* convert script removed(not relevant)

* minor comments done

* added ckpt conversion script

* tokenizer done

* very minor fix of index.md 2

* mostly make fixup related

* all done except fe and rotary emb

* very small change

* removed unidecode dependency

* style changes

* tokenizer removed require_backends

* added require_inflect to tokenizer tests

* removed VOCAB_FILES in tokenizer test

* inflect dependency removed

* added rotary pos emb cache and simplified the apply method

* style

* little doc change

* more comments

* feature extractor added

* added processor

* auto-regressive config added

* added CLVPConditioningEncoder

* comments done except the test one

* weights added successfull(NOT tested)

* tokenizer fix with numbers

* generate outputs matching

* almost tests passing Integ tests not written

* Integ tests added

* major CUDA error fixed

* docs done

* rebase and multiple fixes

* fixed rebase overwrites

* generate code simplified and tests for AutoRegressive model added

* minor changes

* refectored gpt2 code in clvp file

* weights done and all code refactored

* mostly done except the fast_tokenizer

* doc test fix

* config file's doc fixes

* more config fix

* more comments

* tokenizer comments mostly done

* modeling file mostly refactored and can load modules

* ClvpEncoder tested

* ClvpDecoder, ClvpModel and ClvpForCausalLM tested

* integration and all tests passed

* more fixes

* docs almost done

* ckpt conversion refectored

* style and some failing tests fix

* comments

* temporary output fix but test_assisted_decoding_matches_greedy_search test fails

* majority changes done

* use_cache outputs same now! Along with the asisted_greedy_decoding test fix

* more comments

* more comments

* prepare_inputs_for_generation fixed and _prepare_model_inputs added

* style fix

* clvp.md change

* moved clvpconditionalencoder norms

* add model to new index

* added tokenizer input_ids_with_special_tokens

* small fix

* config mostly done

* added config-tester and changed conversion script

* more comments

* comments

* style fix

* some comments

* tokenizer changed back to prev state

* small commnets

* added output hidden states for the main model

* style fix

* comments

* small change

* revert small change

* .

* Update clvp.md

* Update test_modeling_clvp.py

* :)

* some minor change

* new fixes

* remove to_dict from FE
2023-11-10 13:49:10 +00:00

238 lines
10 KiB
Python

# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from transformers import ClvpFeatureExtractor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, slow
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
global_rng = random.Random()
# Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
class ClvpFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=10,
hop_length=160,
chunk_length=8,
padding_value=0.0,
sampling_rate=4_000,
return_attention_mask=False,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.feature_size = feature_size
self.chunk_length = chunk_length
self.hop_length = hop_length
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
}
# Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTester.prepare_inputs_for_common
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
class ClvpFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = ClvpFeatureExtractor
def setUp(self):
self.feat_extract_tester = ClvpFeatureExtractionTester(self)
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
# Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_from_and_save_pretrained
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.mel_filters
mel_2 = feat_extract_second.mel_filters
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
# Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_feat_extract_to_json_file
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.mel_filters
mel_2 = feat_extract_second.mel_filters
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test truncation required
speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs]
np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Copied from transformers.tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_double_precision_pad
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
ds = ds.cast_column("audio", Audio(sampling_rate=22050))
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples], [x["sampling_rate"] for x in speech_samples]
@slow
def test_integration(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
0.9271, 1.1405, 1.4419, 1.2470, 1.2438, 1.1787, 1.0595, 1.0570, 1.1070,
1.2205, 1.2376, 1.2997, 1.1131, 1.0843, 1.0459, 1.1858, 1.2323, 1.3582,
1.3401, 1.3770, 1.4173, 1.3381, 1.2291, 1.0854, 1.2116, 1.1873, 1.2178,
1.2137, 1.3001, 1.4274
]
)
# fmt: on
input_speech, sr = self._load_datasamples(1)
feature_extractor = ClvpFeatureExtractor.from_pretrained("susnato/clvp_dev")
input_features = feature_extractor(input_speech, sampling_rate=sr[0], return_tensors="pt").input_features
self.assertEqual(input_features.shape, (1, 80, 517))
self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))