transformers/tests/test_pipelines.py
Funtowicz Morgan 3f3fa7f7da
Integrate fast tokenizers library inside transformers (#2674)
* Implemented fast version of tokenizers

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bumped tokenizers version requirements to latest 0.2.1

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added matching tests

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Matching OpenAI GPT tokenization !

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Matching GPT2 on tokenizers

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Expose add_prefix_space as constructor parameter for GPT2

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Matching Roberta tokenization !

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Removed fast implementation of CTRL.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Binding TransformerXL tokenizers to Rust.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Updating tests accordingly.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added tokenizers as top-level modules.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Black & isort.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Rename LookupTable to WordLevel to match Rust side.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Black.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Use "fast" suffix instead of "ru" for rust tokenizers implementations.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Introduce tokenize() method on fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* encode_plus dispatchs to batch_encode_plus

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* batch_encode_plus now dispatchs to encode if there is only one input element.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bind all the encode_plus parameter to the forwarded batch_encode_plus call.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bump tokenizers dependency to 0.3.0

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Formatting.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix tokenization_auto with support for new (python, fast) mapping schema.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Give correct fixtures path in test_tokenization_fast.py for the CLI.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Expose max_len_ properties on BertTokenizerFast

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Move max_len_ properties to PreTrainedTokenizerFast and override in specific subclasses.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* _convert_encoding should keep the batch axis tensor if only one sample in the batch.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Add warning message for RobertaTokenizerFast if used for MLM.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added use_fast (bool) parameter on AutoTokenizer.from_pretrained().

This allows to easily enable/disable Rust-based tokenizer instantiation.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Let's tokenizers handle all the truncation and padding stuff.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Allow to provide tokenizer arguments during pipeline creation.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Update test_fill_mask pipeline to not use fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix too much parameters for convert_encoding.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* When enabling padding, max_length should be set to None.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Avoid returning nested tensors of length 1 when calling encode_plus

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Ensure output is padded when return_tensor is not None.

Tensor creation requires the inital list input to be of the exact same size.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Disable transfoxl unittest if pytorch is not available (required to load the model)

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* encode_plus should not remove the leading batch axis if return_tensor is set

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Temporary disable fast tokenizers on QA pipelines.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix formatting issues.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Update tokenizers to 0.4.0

* Update style

* Enable truncation + stride unit test on fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Add unittest ensuring special_tokens set match between Python and Rust.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Ensure special_tokens are correctly set during construction.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Give more warning feedback to the user in case of padding without pad_token.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* quality & format.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added possibility to add a single token as str

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Added unittest for add_tokens and add_special_tokens on fast tokenizers.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix rebase mismatch on pipelines qa default model.

QA requires cased input while the tokenizers would be uncased.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Using offset mapping relative to the original string + unittest.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: save_vocabulary requires folder and file name

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Simplify import for Bert.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: truncate_and_pad disables padding according to the same heuristic than the one enabling padding.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Remove private member access in tokenize()

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Bump tokenizers dependency to 0.4.2

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* format & quality.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Use named arguments when applicable.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Add Github link to Roberta/GPT2 space issue on masked input.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Move max_len_single_sentence / max_len_sentences_pair to PreTrainedTokenizerFast + tests.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Relax type checking to include tuple and list object.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Addressing review comment: Document the truncate_and_pad manager behavior.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Raise an exception if return_offsets_mapping is not available with the current tokenizer.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Ensure padding is set on the tokenizers before setting any padding strategy + unittest.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* On pytorch we need to stack tensor to get proper new axis.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Generalize tests to different framework removing hard written return_tensors="..."

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bump tokenizer dependency for num_special_tokens_to_add

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Overflowing tokens in batch_encode_plus are now stacked over the batch axis.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Improved error message for padding strategy without pad token.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Bumping tokenizers dependency to 0.5.0 for release.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Optimizing convert_encoding around 4x improvement. 🚀

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* expose pad_to_max_length in encode_plus to avoid duplicating the parameters in kwargs

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Generate a proper overflow_to_sampling_mapping when return_overflowing_tokens is True.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Fix unittests for overflow_to_sampling_mapping not being returned as tensor.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Format & quality.

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Remove perfect alignment constraint for Roberta (allowing 1% difference max)

Signed-off-by: Morgan Funtowicz <morgan@huggingface.co>

* Triggering final CI

Co-authored-by: MOI Anthony <xn1t0x@gmail.com>
2020-02-19 11:35:40 -05:00

307 lines
12 KiB
Python

import unittest
from typing import Iterable, List, Optional
from transformers import pipeline
from transformers.pipelines import Pipeline
from .utils import require_tf, require_torch
QA_FINETUNED_MODELS = [
(("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
TF_QA_FINETUNED_MODELS = [
(("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
(("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
TF_NER_FINETUNED_MODELS = {
(
"bert-base-cased",
"dbmdz/bert-large-cased-finetuned-conll03-english",
"dbmdz/bert-large-cased-finetuned-conll03-english",
)
}
NER_FINETUNED_MODELS = {
(
"bert-base-cased",
"dbmdz/bert-large-cased-finetuned-conll03-english",
"dbmdz/bert-large-cased-finetuned-conll03-english",
)
}
FEATURE_EXTRACT_FINETUNED_MODELS = {
("bert-base-cased", "bert-base-cased", None),
# ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
("distilbert-base-cased", "distilbert-base-cased", None),
}
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
("bert-base-cased", "bert-base-cased", None),
# ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
("distilbert-base-cased", "distilbert-base-cased", None),
}
TF_TEXT_CLASSIF_FINETUNED_MODELS = {
(
"bert-base-uncased",
"distilbert-base-uncased-finetuned-sst-2-english",
"distilbert-base-uncased-finetuned-sst-2-english",
)
}
TEXT_CLASSIF_FINETUNED_MODELS = {
(
"bert-base-uncased",
"distilbert-base-uncased-finetuned-sst-2-english",
"distilbert-base-uncased-finetuned-sst-2-english",
)
}
FILL_MASK_FINETUNED_MODELS = [
(("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
TF_FILL_MASK_FINETUNED_MODELS = [
(("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
class MonoColumnInputTestCase(unittest.TestCase):
def _test_mono_column_pipeline(
self,
nlp: Pipeline,
valid_inputs: List,
invalid_inputs: List,
output_keys: Iterable[str],
expected_multi_result: Optional[List] = None,
expected_check_keys: Optional[List[str]] = None,
):
self.assertIsNotNone(nlp)
mono_result = nlp(valid_inputs[0])
self.assertIsInstance(mono_result, list)
self.assertIsInstance(mono_result[0], (dict, list))
if isinstance(mono_result[0], list):
mono_result = mono_result[0]
for key in output_keys:
self.assertIn(key, mono_result[0])
multi_result = [nlp(input) for input in valid_inputs]
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], (dict, list))
if expected_multi_result is not None:
for result, expect in zip(multi_result, expected_multi_result):
for key in expected_check_keys or []:
self.assertEqual(
set([o[key] for o in result]), set([o[key] for o in expect]),
)
if isinstance(multi_result[0], list):
multi_result = multi_result[0]
for result in multi_result:
for key in output_keys:
self.assertIn(key, result)
self.assertRaises(Exception, nlp, invalid_inputs)
@require_torch
def test_ner(self):
mandatory_keys = {"entity", "word", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_tf
def test_tf_ner(self):
mandatory_keys = {"entity", "word", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_torch
def test_sentiment_analysis(self):
mandatory_keys = {"label", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_tf
def test_tf_sentiment_analysis(self):
mandatory_keys = {"label", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_torch
def test_feature_extraction(self):
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
@require_tf
def test_tf_feature_extraction(self):
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
@require_torch
def test_fill_mask(self):
mandatory_keys = {"sequence", "score", "token"}
valid_inputs = [
"My name is <mask>",
"The largest city in France is <mask>",
]
invalid_inputs = [None]
expected_multi_result = [
[
{"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
{"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
],
[
{
"sequence": "<s> The largest city in France is Paris</s>",
"score": 0.3185044229030609,
"token": 2201,
},
{
"sequence": "<s> The largest city in France is Lyon</s>",
"score": 0.21112334728240967,
"token": 12790,
},
],
]
for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
self._test_mono_column_pipeline(
nlp,
valid_inputs,
invalid_inputs,
mandatory_keys,
expected_multi_result=expected_multi_result,
expected_check_keys=["sequence"],
)
@require_tf
def test_tf_fill_mask(self):
mandatory_keys = {"sequence", "score", "token"}
valid_inputs = [
"My name is <mask>",
"The largest city in France is <mask>",
]
invalid_inputs = [None]
expected_multi_result = [
[
{"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
{"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
],
[
{
"sequence": "<s> The largest city in France is Paris</s>",
"score": 0.3185044229030609,
"token": 2201,
},
{
"sequence": "<s> The largest city in France is Lyon</s>",
"score": 0.21112334728240967,
"token": 12790,
},
],
]
for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
self._test_mono_column_pipeline(
nlp,
valid_inputs,
invalid_inputs,
mandatory_keys,
expected_multi_result=expected_multi_result,
expected_check_keys=["sequence"],
)
class MultiColumnInputTestCase(unittest.TestCase):
def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
self.assertIsNotNone(nlp)
mono_result = nlp(valid_inputs[0])
self.assertIsInstance(mono_result, dict)
for key in output_keys:
self.assertIn(key, mono_result)
multi_result = nlp(valid_inputs)
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], dict)
for result in multi_result:
for key in output_keys:
self.assertIn(key, result)
self.assertRaises(Exception, nlp, invalid_inputs[0])
self.assertRaises(Exception, nlp, invalid_inputs)
@require_torch
def test_question_answering(self):
mandatory_output_keys = {"score", "answer", "start", "end"}
valid_samples = [
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
{
"question": "In what field is HuggingFace working ?",
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
},
]
invalid_samples = [
{"question": "", "context": "This is a test to try empty question edge case"},
{"question": None, "context": "This is a test to try empty question edge case"},
{"question": "What is does with empty context ?", "context": ""},
{"question": "What is does with empty context ?", "context": None},
]
for tokenizer, model, config in QA_FINETUNED_MODELS:
nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
@require_tf
@unittest.skip("This test is failing intermittently. Skipping it until we resolve.")
def test_tf_question_answering(self):
mandatory_output_keys = {"score", "answer", "start", "end"}
valid_samples = [
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
{
"question": "In what field is HuggingFace working ?",
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
},
]
invalid_samples = [
{"question": "", "context": "This is a test to try empty question edge case"},
{"question": None, "context": "This is a test to try empty question edge case"},
{"question": "What is does with empty context ?", "context": ""},
{"question": "What is does with empty context ?", "context": None},
]
for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)