transformers/tests/models/jamba/test_modeling_jamba.py
tomeras91 3f20877da9
Add jamba (#29943)
* Add jamba arch

* apply "make fix-copies" changes

* fix link to model in JambaConfig docstring

* Add n_ctx in modeling file because repo-consistency wants that

* Add jamba to flash attention and sdpa documentation

* mamba dt_proj quant fix now works for LoRA as well

* override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers

* add jamba to tokenization auto

* fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24)

* simple PR fixes

* remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer

* remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530)

* Add copied comment on JambaMLP (it's the same as MixtralMLP)

* remove padding_mask warnings. It's not supported anymore

* fix docstring. Float instead of int

* A few more minor PR fixes

* (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass

* Return None attention weights from mamba layers. Append to all attentions only if not None.

* remove some leftover jamba archive lists

* Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel

* no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers

* Add Jamba paper on READMEs

* (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes)

* Add copied from comment

* remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms

* clearer docstring for _convert_to_standard_cache

* style fixes

* Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs

* rename test so it still overrides what its meant to override

* draft

* oups

* nit

* remove more complexe logic

* fix names used in config

* fix fix fix

* style

* fix some more failing tests

* generate did not init the cache 🙃

* more small nits

* typo

* config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes

* fix init of pkv with torch.tensor()

* empty tensor

* fix some init issues

* stupid changes required by generate because it does not even support it's own DynamicCache class

* more fixes

* fix general assisted gen cache_position bug

* tests passing

* Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py

* fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache

* no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore

* fix docstrings and typehints for past_key_values

* style fixes

* fix docs

* change typehint due to copy from Mixtral

* forgot import

* import order

* Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward)

* Add integration test with tiny tandom Jamba model on hub

* fix flash attention cache shapes

* bring back forgotten hidden states

* rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model

* align integration test after modeling fixes

* bugfix - mamba can use precomputed states only of forward pass is on a single token

* bugfix - mamba can use precomputed states only if they match the batch size

* typo

* remove making _prepare_4d_causal_attention_mask a leaf function

* stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-04-18 11:04:02 +02:00

731 lines
30 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Jamba model. """
import math
import tempfile
import unittest
import pytest
from parameterized import parameterized
from transformers import AutoTokenizer, JambaConfig, is_torch_available
from transformers.testing_utils import (
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
JambaForCausalLM,
JambaForSequenceClassification,
JambaModel,
)
from transformers.models.jamba.modeling_jamba import (
HybridMambaAttentionDynamicCache,
)
class JambaModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
attn_layer_offset=1,
attn_layer_period=8,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.attn_layer_offset = attn_layer_offset
self.attn_layer_period = attn_layer_period
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return JambaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
attn_layer_offset=self.attn_layer_offset,
attn_layer_period=self.attn_layer_period,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=True,
initializer_range=self.initializer_range,
use_mamba_kernels=False,
num_experts=2,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = JambaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = JambaForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids, labels=token_labels)
result = model(input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
config.add_cross_attention = True
model = JambaForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
# Attention: Jamba needs the cache to be initialized to return a cache!
past_key_values = HybridMambaAttentionDynamicCache(
config, input_ids.shape[0], model.dtype, device=model.device
)
outputs = model(
input_ids,
attention_mask=input_mask,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
cache_position=torch.arange(
input_ids.shape[1], input_ids.shape[1] + next_tokens.shape[1], device=model.device
),
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_sequence_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = JambaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class JambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
JambaModel,
JambaForCausalLM,
JambaForSequenceClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (JambaForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": JambaModel,
"text-classification": JambaForSequenceClassification,
"text-generation": JambaForCausalLM,
"zero-shot": JambaForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = JambaModelTester(self)
self.config_tester = ConfigTester(self, config_class=JambaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_casual_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_load_balancing_loss(self):
r"""
Let's make sure we can actually compute the loss and do a backward on it.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.num_experts = 16
config.output_router_logits = True
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(config.pad_token_id).to(torch_device)
model = JambaForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask)
bs, seqlen = input_ids.shape
self.assertEqual(result.router_logits[0].shape, (bs * seqlen, config.num_experts))
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
# First, we make sure that adding padding tokens doesn't change the loss
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
pad_length = 1000
# Add padding tokens to input_ids
padding_block = config.pad_token_id * torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(
torch_device
)
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
padded_attention_mask = padded_input_ids.ne(config.pad_token_id).to(torch_device)
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
# We make sure that the loss of including padding tokens != the loss without padding tokens
# if attention_mask=None --> we don't exclude padding tokens
include_padding_result = model(padded_input_ids, attention_mask=None)
# This is to mimic torch.testing.assert_not_close
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
def test_initialization(self):
r"""
Overriding the test_initialization test as the A_log and D params of the Mamba block are initialized differently
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if "A_log" in name:
A = torch.arange(1, config.mamba_d_state + 1, dtype=torch.float32)[None, :]
self.assertTrue(torch.allclose(param.data, torch.log(A), atol=1e-5, rtol=1e-5))
elif "D" in name:
# check if it's a ones like
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_mismatched_shapes_have_properly_initialized_weights(self):
r"""
Overriding the test_mismatched_shapes_have_properly_initialized_weights test because A_log and D params of the
Mamba block are initialized differently and we tested that in test_initialization
"""
self.skipTest("Cumbersome and redundant for Jamba")
def test_attention_outputs(self):
r"""
Overriding the test_attention_outputs test as the Jamba model outputs attention only for its attention layers
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
expected_num_attentions = math.ceil(
(self.model_tester.num_hidden_layers - self.model_tester.attn_layer_offset)
/ self.model_tester.attn_layer_period
)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_left_padding_compatibility(self):
r"""
Overriding the test_left_padding_compatibility test as the mamba layers accentuate the numerical differences
effect of the left padding discussed in the issue in the note. Using a more permissive tolerance value.
"""
import inspect
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding - generative and decoder-only.
# Jamba is a decoder-only architecture
decoder_only_classes = self.all_generative_model_classes
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, input_ids, attention_mask, _ = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]
# With left-padding (length 32)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]
# They should result in very similar logits
self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=3e-3))
@require_flash_attn
@require_torch_gpu
@require_bitsandbytes
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_fp32_ln(self):
r"""
Overriding the test_flash_attn_2_fp32_ln test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_input = inputs_dict[model.main_input_name]
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Jamba does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
load_in_4bit=True,
)
for _, param in model.named_parameters():
# upcast only layer norms
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
_ = model(dummy_input)
# with attention mask
_ = model(dummy_input, attention_mask=dummy_attention_mask)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_padding_right(self):
r"""
Overriding the test_flash_attn_2_generate_padding_right test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
import torch
for model_class in self.all_generative_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)
model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
with self.assertRaises(ValueError):
_ = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_use_cache(self):
r"""
Overriding the test_flash_attn_2_generate_use_cache test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
import torch
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Jamba does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
# Just test that a large cache works as expected
_ = model.generate(
dummy_input,
attention_mask=dummy_attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
use_cache=True,
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence_right_padding(self):
r"""
Overriding the test_flash_attn_2_inference_padding_right test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
self.skipTest("Jamba flash attention does not support right padding")
@unittest.skip("Jamba has its own special cache type")
@parameterized.expand([(1, False), (1, True), (4, False)])
def test_new_cache_format(self, num_beams, do_sample):
pass
@require_torch
class JambaModelIntegrationTest(unittest.TestCase):
model = None
tokenizer = None
@classmethod
def setUpClass(cls):
model_id = "ai21labs/Jamba-tiny-random"
cls.model = JambaForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
cls.tokenizer = AutoTokenizer.from_pretrained(model_id)
@slow
def test_simple_generate(self):
self.model.to(torch_device)
input_ids = self.tokenizer("Hey how are you doing on this lovely evening?", return_tensors="pt")[
"input_ids"
].to(torch_device)
out = self.model.generate(input_ids, do_sample=False, max_new_tokens=10)
output_sentence = self.tokenizer.decode(out[0, :])
self.assertEqual(
output_sentence,
"<|startoftext|>Hey how are you doing on this lovely evening? Canyon rins hugaughter glamour Rutgers Singh Hebrew cases Cats",
)
with torch.no_grad():
logits = self.model(input_ids=input_ids).logits
EXPECTED_LOGITS_NO_GRAD = torch.tensor(
[
0.0140, -0.2246, 0.0408, -0.1016, 0.0471, 0.2715, -0.1465, 0.1631,
-0.2949, -0.0297, 0.0250, -0.5586, -0.2139, -0.1426, -0.1602, 0.1309,
0.0703, 0.2236, 0.1729, -0.2285, -0.1152, -0.1177, -0.1367, 0.0289,
0.1245, 0.2363, 0.0442, 0.1094, -0.1348, -0.2295, 0.1494, -0.3945,
0.1777, -0.4570, -0.0408, 0.2412, 0.1562, -0.1943, 0.2373, -0.0593
]
, dtype=torch.float32) # fmt: skip
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3)
@slow
def test_simple_batched_generate_with_padding(self):
self.model.to(torch_device)
inputs = self.tokenizer(
["Hey how are you doing on this lovely evening?", "Tell me a story"], padding=True, return_tensors="pt"
).to(torch_device)
out = self.model.generate(**inputs, do_sample=False, max_new_tokens=10)
output_sentences = self.tokenizer.batch_decode(out)
self.assertEqual(
output_sentences[0],
"<|startoftext|>Hey how are you doing on this lovely evening? Canyon rins hugaughter glamour Rutgers Singh Hebrew cases Cats",
)
self.assertEqual(
output_sentences[1],
"<|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|startoftext|>Tell me a storyptus Nets Madison El chamadamodern updximVaparsed",
)
with torch.no_grad():
logits = self.model(input_ids=inputs["input_ids"]).logits
EXPECTED_LOGITS_NO_GRAD_0 = torch.tensor(
[
0.0140, -0.2246, 0.0408, -0.1016, 0.0471, 0.2715, -0.1465, 0.1631,
-0.2949, -0.0297, 0.0250, -0.5586, -0.2139, -0.1426, -0.1602, 0.1309,
0.0703, 0.2236, 0.1729, -0.2285, -0.1152, -0.1177, -0.1367, 0.0289,
0.1245, 0.2363, 0.0442, 0.1094, -0.1348, -0.2295, 0.1494, -0.3945,
0.1777, -0.4570, -0.0408, 0.2412, 0.1562, -0.1943, 0.2373, -0.0593
]
, dtype=torch.float32) # fmt: skip
EXPECTED_LOGITS_NO_GRAD_1 = torch.tensor(
[
-0.1289, 0.2363, -0.4180, -0.0302, -0.0476, 0.0327, 0.2578, 0.0874,
0.1484, 0.2305, -0.1152, -0.1396, -0.1494, -0.1113, -0.0021, -0.2832,
0.2002, -0.2676, 0.0598, -0.1982, -0.2539, -0.1133, -0.1973, 0.2148,
0.0559, 0.1670, 0.1846, 0.1270, 0.1680, -0.1250, -0.2656, -0.2871,
0.2344, 0.2637, 0.0510, -0.1855, 0.2158, -0.1289, 0.1758, 0.0074
]
, dtype=torch.float32) # fmt: skip
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_0, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(logits[1, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_1, rtol=1e-3, atol=1e-3)