mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
696 lines
34 KiB
Python
696 lines
34 KiB
Python
# coding=utf-8
|
|
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch DistilBERT model
|
|
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
|
|
and in part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
|
|
"""
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import copy
|
|
import sys
|
|
from io import open
|
|
|
|
import itertools
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .modeling_utils import PreTrainedModel, prune_linear_layer
|
|
from .configuration_distilbert import DistilBertConfig
|
|
from .file_utils import add_start_docstrings
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
|
|
'distilbert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-pytorch_model.bin",
|
|
'distilbert-base-uncased-distilled-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-distilled-squad-pytorch_model.bin"
|
|
}
|
|
|
|
|
|
### UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE ###
|
|
def gelu(x):
|
|
return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
|
|
|
def create_sinusoidal_embeddings(n_pos, dim, out):
|
|
position_enc = np.array([
|
|
[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
|
|
for pos in range(n_pos)
|
|
])
|
|
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
|
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
|
out.detach_()
|
|
out.requires_grad = False
|
|
|
|
class Embeddings(nn.Module):
|
|
def __init__(self,
|
|
config):
|
|
super(Embeddings, self).__init__()
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=0)
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
|
|
if config.sinusoidal_pos_embds:
|
|
create_sinusoidal_embeddings(n_pos=config.max_position_embeddings,
|
|
dim=config.dim,
|
|
out=self.position_embeddings.weight)
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, input_ids):
|
|
"""
|
|
Parameters
|
|
----------
|
|
input_ids: torch.tensor(bs, max_seq_length)
|
|
The token ids to embed.
|
|
|
|
Outputs
|
|
-------
|
|
embeddings: torch.tensor(bs, max_seq_length, dim)
|
|
The embedded tokens (plus position embeddings, no token_type embeddings)
|
|
"""
|
|
seq_length = input_ids.size(1)
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
|
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length)
|
|
|
|
word_embeddings = self.word_embeddings(input_ids) # (bs, max_seq_length, dim)
|
|
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim)
|
|
|
|
embeddings = word_embeddings + position_embeddings # (bs, max_seq_length, dim)
|
|
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim)
|
|
embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim)
|
|
return embeddings
|
|
|
|
class MultiHeadSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super(MultiHeadSelfAttention, self).__init__()
|
|
|
|
self.n_heads = config.n_heads
|
|
self.dim = config.dim
|
|
self.dropout = nn.Dropout(p=config.attention_dropout)
|
|
self.output_attentions = config.output_attentions
|
|
|
|
assert self.dim % self.n_heads == 0
|
|
|
|
self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
|
self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
|
self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
|
self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
|
|
|
|
self.pruned_heads = set()
|
|
|
|
def prune_heads(self, heads):
|
|
attention_head_size = self.dim // self.n_heads
|
|
if len(heads) == 0:
|
|
return
|
|
mask = torch.ones(self.n_heads, attention_head_size)
|
|
heads = set(heads) - self.pruned_heads
|
|
for head in heads:
|
|
head -= sum(1 if h < head else 0 for h in self.pruned_heads)
|
|
mask[head] = 0
|
|
mask = mask.view(-1).contiguous().eq(1)
|
|
index = torch.arange(len(mask))[mask].long()
|
|
# Prune linear layers
|
|
self.q_lin = prune_linear_layer(self.q_lin, index)
|
|
self.k_lin = prune_linear_layer(self.k_lin, index)
|
|
self.v_lin = prune_linear_layer(self.v_lin, index)
|
|
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
|
|
# Update hyper params
|
|
self.n_heads = self.n_heads - len(heads)
|
|
self.dim = attention_head_size * self.n_heads
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
def forward(self, query, key, value, mask, head_mask = None):
|
|
"""
|
|
Parameters
|
|
----------
|
|
query: torch.tensor(bs, seq_length, dim)
|
|
key: torch.tensor(bs, seq_length, dim)
|
|
value: torch.tensor(bs, seq_length, dim)
|
|
mask: torch.tensor(bs, seq_length)
|
|
|
|
Outputs
|
|
-------
|
|
weights: torch.tensor(bs, n_heads, seq_length, seq_length)
|
|
Attention weights
|
|
context: torch.tensor(bs, seq_length, dim)
|
|
Contextualized layer. Optional: only if `output_attentions=True`
|
|
"""
|
|
bs, q_length, dim = query.size()
|
|
k_length = key.size(1)
|
|
# assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
|
|
# assert key.size() == value.size()
|
|
|
|
dim_per_head = self.dim // self.n_heads
|
|
|
|
assert 2 <= mask.dim() <= 3
|
|
causal = (mask.dim() == 3)
|
|
mask_reshp = (bs, 1, 1, k_length)
|
|
|
|
def shape(x):
|
|
""" separate heads """
|
|
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
|
|
|
def unshape(x):
|
|
""" group heads """
|
|
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
|
|
|
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
|
|
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
|
|
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
|
|
|
|
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
|
|
scores = torch.matmul(q, k.transpose(2,3)) # (bs, n_heads, q_length, k_length)
|
|
mask = (mask==0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
|
|
scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length)
|
|
|
|
weights = nn.Softmax(dim=-1)(scores) # (bs, n_heads, q_length, k_length)
|
|
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
weights = weights * head_mask
|
|
|
|
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head)
|
|
context = unshape(context) # (bs, q_length, dim)
|
|
context = self.out_lin(context) # (bs, q_length, dim)
|
|
|
|
if self.output_attentions:
|
|
return (context, weights)
|
|
else:
|
|
return (context,)
|
|
|
|
class FFN(nn.Module):
|
|
def __init__(self, config):
|
|
super(FFN, self).__init__()
|
|
self.dropout = nn.Dropout(p=config.dropout)
|
|
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
|
|
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
|
|
assert config.activation in ['relu', 'gelu'], "activation ({}) must be in ['relu', 'gelu']".format(config.activation)
|
|
self.activation = gelu if config.activation == 'gelu' else nn.ReLU()
|
|
|
|
def forward(self, input):
|
|
x = self.lin1(input)
|
|
x = self.activation(x)
|
|
x = self.lin2(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, config):
|
|
super(TransformerBlock, self).__init__()
|
|
|
|
self.n_heads = config.n_heads
|
|
self.dim = config.dim
|
|
self.hidden_dim = config.hidden_dim
|
|
self.dropout = nn.Dropout(p=config.dropout)
|
|
self.activation = config.activation
|
|
self.output_attentions = config.output_attentions
|
|
|
|
assert config.dim % config.n_heads == 0
|
|
|
|
self.attention = MultiHeadSelfAttention(config)
|
|
self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
|
|
|
|
self.ffn = FFN(config)
|
|
self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
|
|
|
|
def forward(self, x, attn_mask=None, head_mask=None):
|
|
"""
|
|
Parameters
|
|
----------
|
|
x: torch.tensor(bs, seq_length, dim)
|
|
attn_mask: torch.tensor(bs, seq_length)
|
|
|
|
Outputs
|
|
-------
|
|
sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length)
|
|
The attention weights
|
|
ffn_output: torch.tensor(bs, seq_length, dim)
|
|
The output of the transformer block contextualization.
|
|
"""
|
|
# Self-Attention
|
|
sa_output = self.attention(query=x, key=x, value=x, mask=attn_mask, head_mask=head_mask)
|
|
if self.output_attentions:
|
|
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
|
|
else: # To handle these `output_attention` or `output_hidden_states` cases returning tuples
|
|
assert type(sa_output) == tuple
|
|
sa_output = sa_output[0]
|
|
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
|
|
|
|
# Feed Forward Network
|
|
ffn_output = self.ffn(sa_output) # (bs, seq_length, dim)
|
|
ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
|
|
|
|
output = (ffn_output,)
|
|
if self.output_attentions:
|
|
output = (sa_weights,) + output
|
|
return output
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, config):
|
|
super(Transformer, self).__init__()
|
|
self.n_layers = config.n_layers
|
|
self.output_attentions = config.output_attentions
|
|
self.output_hidden_states = config.output_hidden_states
|
|
|
|
layer = TransformerBlock(config)
|
|
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layers)])
|
|
|
|
def forward(self, x, attn_mask=None, head_mask=None):
|
|
"""
|
|
Parameters
|
|
----------
|
|
x: torch.tensor(bs, seq_length, dim)
|
|
Input sequence embedded.
|
|
attn_mask: torch.tensor(bs, seq_length)
|
|
Attention mask on the sequence.
|
|
|
|
Outputs
|
|
-------
|
|
hidden_state: torch.tensor(bs, seq_length, dim)
|
|
Sequence of hiddens states in the last (top) layer
|
|
all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
|
|
Tuple of length n_layers with the hidden states from each layer.
|
|
Optional: only if output_hidden_states=True
|
|
all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
|
|
Tuple of length n_layers with the attention weights from each layer
|
|
Optional: only if output_attentions=True
|
|
"""
|
|
all_hidden_states = ()
|
|
all_attentions = ()
|
|
|
|
hidden_state = x
|
|
for i, layer_module in enumerate(self.layer):
|
|
if self.output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_state,)
|
|
|
|
layer_outputs = layer_module(x=hidden_state,
|
|
attn_mask=attn_mask,
|
|
head_mask=head_mask[i])
|
|
hidden_state = layer_outputs[-1]
|
|
|
|
if self.output_attentions:
|
|
assert len(layer_outputs) == 2
|
|
attentions = layer_outputs[0]
|
|
all_attentions = all_attentions + (attentions,)
|
|
else:
|
|
assert len(layer_outputs) == 1
|
|
|
|
# Add last layer
|
|
if self.output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_state,)
|
|
|
|
outputs = (hidden_state,)
|
|
if self.output_hidden_states:
|
|
outputs = outputs + (all_hidden_states,)
|
|
if self.output_attentions:
|
|
outputs = outputs + (all_attentions,)
|
|
return outputs # last-layer hidden state, (all hidden states), (all attentions)
|
|
|
|
|
|
### INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL ###
|
|
class DistilBertPreTrainedModel(PreTrainedModel):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for downloading and loading pretrained models.
|
|
"""
|
|
config_class = DistilBertConfig
|
|
pretrained_model_archive_map = DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
|
load_tf_weights = None
|
|
base_model_prefix = "distilbert"
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super(DistilBertPreTrainedModel, self).__init__(*inputs, **kwargs)
|
|
|
|
def _init_weights(self, module):
|
|
""" Initialize the weights.
|
|
"""
|
|
if isinstance(module, nn.Embedding):
|
|
if module.weight.requires_grad:
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
|
module.bias.data.zero_()
|
|
|
|
|
|
DISTILBERT_START_DOCSTRING = r"""
|
|
DistilBERT is a small, fast, cheap and light Transformer model
|
|
trained by distilling Bert base. It has 40% less parameters than
|
|
`bert-base-uncased`, runs 60% faster while preserving over 95% of
|
|
Bert's performances as measured on the GLUE language understanding benchmark.
|
|
|
|
Here are the differences between the interface of Bert and DistilBert:
|
|
|
|
- DistilBert doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`)
|
|
- DistilBert doesn't have options to select the input positions (`position_ids` input). This could be added if necessary though, just let's us know if you need this option.
|
|
|
|
For more information on DistilBERT, please refer to our
|
|
`detailed blog post`_
|
|
|
|
.. _`detailed blog post`:
|
|
https://medium.com/huggingface/distilbert-8cf3380435b5
|
|
|
|
Parameters:
|
|
config (:class:`~pytorch_transformers.DistilBertConfig`): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
|
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
|
|
"""
|
|
|
|
DISTILBERT_INPUTS_DOCSTRING = r"""
|
|
Inputs:
|
|
**input_ids** ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of input sequence tokens in the vocabulary.
|
|
The input sequences should start with `[CLS]` and end with `[SEP]` tokens.
|
|
|
|
For now, ONLY BertTokenizer(`bert-base-uncased`) is supported and you should use this tokenizer when using DistilBERT.
|
|
**attention_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
|
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
|
Mask to nullify selected heads of the self-attention modules.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
|
"""
|
|
|
|
@add_start_docstrings("The bare DistilBERT encoder/transformer outputing raw hidden-states without any specific head on top.",
|
|
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
|
|
class DistilBertModel(DistilBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
|
Sequence of hidden-states at the output of the last layer of the model.
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
|
model = DistilBertModel.from_pretrained('distilbert-base-uncased')
|
|
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
outputs = model(input_ids)
|
|
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(DistilBertModel, self).__init__(config)
|
|
|
|
self.embeddings = Embeddings(config) # Embeddings
|
|
self.transformer = Transformer(config) # Encoder
|
|
|
|
self.init_weights()
|
|
|
|
def _resize_token_embeddings(self, new_num_tokens):
|
|
old_embeddings = self.embeddings.word_embeddings
|
|
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
|
|
self.embeddings.word_embeddings = new_embeddings
|
|
return self.embeddings.word_embeddings
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
See base class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.transformer.layer[layer].attention.prune_heads(heads)
|
|
|
|
def forward(self,
|
|
input_ids, attention_mask=None, head_mask=None):
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones_like(input_ids) # (bs, seq_length)
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
|
else:
|
|
head_mask = [None] * self.config.num_hidden_layers
|
|
|
|
embedding_output = self.embeddings(input_ids) # (bs, seq_length, dim)
|
|
tfmr_output = self.transformer(x=embedding_output,
|
|
attn_mask=attention_mask,
|
|
head_mask=head_mask)
|
|
hidden_state = tfmr_output[0]
|
|
output = (hidden_state, ) + tfmr_output[1:]
|
|
|
|
return output # last-layer hidden-state, (all hidden_states), (all attentions)
|
|
|
|
|
|
@add_start_docstrings("""DistilBert Model with a `masked language modeling` head on top. """,
|
|
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
|
|
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
|
|
r"""
|
|
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
|
Labels for computing the masked language modeling loss.
|
|
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
|
|
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
|
|
in ``[0, ..., config.vocab_size]``
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Masked language modeling loss.
|
|
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
|
model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
|
|
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
outputs = model(input_ids, masked_lm_labels=input_ids)
|
|
loss, prediction_scores = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(DistilBertForMaskedLM, self).__init__(config)
|
|
self.output_attentions = config.output_attentions
|
|
self.output_hidden_states = config.output_hidden_states
|
|
|
|
self.distilbert = DistilBertModel(config)
|
|
self.vocab_transform = nn.Linear(config.dim, config.dim)
|
|
self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
|
|
self.vocab_projector = nn.Linear(config.dim, config.vocab_size)
|
|
|
|
self.init_weights()
|
|
self.tie_weights()
|
|
|
|
self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
|
|
|
|
def tie_weights(self):
|
|
""" Make sure we are sharing the input and output embeddings.
|
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
|
"""
|
|
self._tie_or_clone_weights(self.vocab_projector,
|
|
self.distilbert.embeddings.word_embeddings)
|
|
|
|
def forward(self, input_ids, attention_mask=None, head_mask=None, masked_lm_labels=None):
|
|
dlbrt_output = self.distilbert(input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask)
|
|
hidden_states = dlbrt_output[0] # (bs, seq_length, dim)
|
|
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
|
|
prediction_logits = gelu(prediction_logits) # (bs, seq_length, dim)
|
|
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
|
|
prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size)
|
|
|
|
outputs = (prediction_logits, ) + dlbrt_output[1:]
|
|
if masked_lm_labels is not None:
|
|
mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)),
|
|
masked_lm_labels.view(-1))
|
|
outputs = (mlm_loss,) + outputs
|
|
|
|
return outputs # (mlm_loss), prediction_logits, (all hidden_states), (all attentions)
|
|
|
|
|
|
@add_start_docstrings("""DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of
|
|
the pooled output) e.g. for GLUE tasks. """,
|
|
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
|
|
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
|
|
r"""
|
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for computing the sequence classification/regression loss.
|
|
Indices should be in ``[0, ..., config.num_labels - 1]``.
|
|
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
|
|
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Classification (or regression if config.num_labels==1) loss.
|
|
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
|
|
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
|
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
|
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
|
|
outputs = model(input_ids, labels=labels)
|
|
loss, logits = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(DistilBertForSequenceClassification, self).__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.distilbert = DistilBertModel(config)
|
|
self.pre_classifier = nn.Linear(config.dim, config.dim)
|
|
self.classifier = nn.Linear(config.dim, config.num_labels)
|
|
self.dropout = nn.Dropout(config.seq_classif_dropout)
|
|
|
|
self.init_weights()
|
|
|
|
def forward(self, input_ids, attention_mask=None, head_mask=None, labels=None):
|
|
distilbert_output = self.distilbert(input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask)
|
|
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
|
|
pooled_output = hidden_state[:, 0] # (bs, dim)
|
|
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
|
|
pooled_output = nn.ReLU()(pooled_output) # (bs, dim)
|
|
pooled_output = self.dropout(pooled_output) # (bs, dim)
|
|
logits = self.classifier(pooled_output) # (bs, dim)
|
|
|
|
outputs = (logits,) + distilbert_output[1:]
|
|
if labels is not None:
|
|
if self.num_labels == 1:
|
|
loss_fct = nn.MSELoss()
|
|
loss = loss_fct(logits.view(-1), labels.view(-1))
|
|
else:
|
|
loss_fct = nn.CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
outputs = (loss,) + outputs
|
|
|
|
return outputs # (loss), logits, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
|
|
the hidden-states output to compute `span start logits` and `span end logits`). """,
|
|
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
|
|
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
|
|
r"""
|
|
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`).
|
|
Position outside of the sequence are not taken into account for computing the loss.
|
|
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`).
|
|
Position outside of the sequence are not taken into account for computing the loss.
|
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
|
|
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
|
|
Span-start scores (before SoftMax).
|
|
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
|
|
Span-end scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
|
model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
|
|
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
|
start_positions = torch.tensor([1])
|
|
end_positions = torch.tensor([3])
|
|
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
|
loss, start_scores, end_scores = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config):
|
|
super(DistilBertForQuestionAnswering, self).__init__(config)
|
|
|
|
self.distilbert = DistilBertModel(config)
|
|
self.qa_outputs = nn.Linear(config.dim, config.num_labels)
|
|
assert config.num_labels == 2
|
|
self.dropout = nn.Dropout(config.qa_dropout)
|
|
|
|
self.init_weights()
|
|
|
|
def forward(self, input_ids, attention_mask=None, head_mask=None, start_positions=None, end_positions=None):
|
|
distilbert_output = self.distilbert(input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask)
|
|
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
|
|
|
|
hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim)
|
|
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1) # (bs, max_query_len)
|
|
end_logits = end_logits.squeeze(-1) # (bs, max_query_len)
|
|
|
|
outputs = (start_logits, end_logits,) + distilbert_output[1:]
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions.clamp_(0, ignored_index)
|
|
end_positions.clamp_(0, ignored_index)
|
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
outputs = (total_loss,) + outputs
|
|
|
|
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
|