mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
144 lines
5.8 KiB
Python
144 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" OpenAI GPT-2 configuration """
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import json
|
|
import logging
|
|
import sys
|
|
from io import open
|
|
|
|
from .configuration_utils import PretrainedConfig
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-config.json",
|
|
"gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-config.json",
|
|
"gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-config.json"}
|
|
|
|
class GPT2Config(PretrainedConfig):
|
|
"""Configuration class to store the configuration of a `GPT2Model`.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
|
|
n_positions: Number of positional embeddings.
|
|
n_ctx: Size of the causal mask (usually same as n_positions).
|
|
n_embd: Dimensionality of the embeddings and hidden states.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
layer_norm_epsilon: epsilon to use in the layer norm layers
|
|
resid_pdrop: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attn_pdrop: The dropout ratio for the attention
|
|
probabilities.
|
|
embd_pdrop: The dropout ratio for the embeddings.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
"""
|
|
pretrained_config_archive_map = GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size_or_config_json_file=50257,
|
|
n_positions=1024,
|
|
n_ctx=1024,
|
|
n_embd=768,
|
|
n_layer=12,
|
|
n_head=12,
|
|
resid_pdrop=0.1,
|
|
embd_pdrop=0.1,
|
|
attn_pdrop=0.1,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
|
|
num_labels=1,
|
|
summary_type='cls_index',
|
|
summary_use_proj=True,
|
|
summary_activation=None,
|
|
summary_proj_to_labels=True,
|
|
summary_first_dropout=0.1,
|
|
**kwargs
|
|
):
|
|
"""Constructs GPT2Config.
|
|
|
|
Args:
|
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `GPT2Model` or a configuration json file.
|
|
n_positions: Number of positional embeddings.
|
|
n_ctx: Size of the causal mask (usually same as n_positions).
|
|
n_embd: Dimensionality of the embeddings and hidden states.
|
|
n_layer: Number of hidden layers in the Transformer encoder.
|
|
n_head: Number of attention heads for each attention layer in
|
|
the Transformer encoder.
|
|
layer_norm_epsilon: epsilon to use in the layer norm layers
|
|
resid_pdrop: The dropout probabilitiy for all fully connected
|
|
layers in the embeddings, encoder, and pooler.
|
|
attn_pdrop: The dropout ratio for the attention
|
|
probabilities.
|
|
embd_pdrop: The dropout ratio for the embeddings.
|
|
initializer_range: The sttdev of the truncated_normal_initializer for
|
|
initializing all weight matrices.
|
|
"""
|
|
super(GPT2Config, self).__init__(**kwargs)
|
|
|
|
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
|
and isinstance(vocab_size_or_config_json_file, unicode)):
|
|
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
|
|
json_config = json.loads(reader.read())
|
|
for key, value in json_config.items():
|
|
self.__dict__[key] = value
|
|
elif isinstance(vocab_size_or_config_json_file, int):
|
|
self.vocab_size = vocab_size_or_config_json_file
|
|
self.n_ctx = n_ctx
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.resid_pdrop = resid_pdrop
|
|
self.embd_pdrop = embd_pdrop
|
|
self.attn_pdrop = attn_pdrop
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
|
|
self.num_labels = num_labels
|
|
self.summary_type = summary_type
|
|
self.summary_use_proj = summary_use_proj
|
|
self.summary_activation = summary_activation
|
|
self.summary_first_dropout = summary_first_dropout
|
|
self.summary_proj_to_labels = summary_proj_to_labels
|
|
else:
|
|
raise ValueError(
|
|
"First argument must be either a vocabulary size (int)"
|
|
"or the path to a pretrained model config file (str)"
|
|
)
|
|
|
|
@property
|
|
def max_position_embeddings(self):
|
|
return self.n_positions
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.n_embd
|
|
|
|
@property
|
|
def num_attention_heads(self):
|
|
return self.n_head
|
|
|
|
@property
|
|
def num_hidden_layers(self):
|
|
return self.n_layer
|