transformers/tests/models/dpt/test_image_processing_dpt.py
Yih-Dar 31d30b7224
Skip some tests for now (#38931)
* try

* [test all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-20 11:05:49 +02:00

369 lines
16 KiB
Python

# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from datasets import load_dataset
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torchvision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
if is_torchvision_available():
from transformers import DPTImageProcessorFast
class DPTImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_reduce_labels=False,
):
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_reduce_labels = do_reduce_labels
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"do_reduce_labels": self.do_reduce_labels,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.size["height"], self.size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
# Copied from transformers.tests.models.beit.test_image_processing_beit.prepare_semantic_single_inputs
def prepare_semantic_single_inputs():
dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True)
image = Image.open(dataset[0]["file"])
map = Image.open(dataset[1]["file"])
return image, map
# Copied from transformers.tests.models.beit.test_image_processing_beit.prepare_semantic_batch_inputs
def prepare_semantic_batch_inputs():
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test", trust_remote_code=True)
image1 = Image.open(ds[0]["file"])
map1 = Image.open(ds[1]["file"])
image2 = Image.open(ds[2]["file"])
map2 = Image.open(ds[3]["file"])
return [image1, image2], [map1, map2]
@require_torch
@require_vision
class DPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = DPTImageProcessor if is_vision_available() else None
fast_image_processing_class = DPTImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = DPTImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size_divisor"))
self.assertTrue(hasattr(image_processing, "do_reduce_labels"))
def test_image_processor_from_dict_with_kwargs(self):
for image_processing_class in self.image_processor_list:
image_processing_class = image_processing_class(**self.image_processor_dict)
image_processor = image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
def test_padding(self):
for image_processing_class in self.image_processor_list:
if image_processing_class == DPTImageProcessorFast:
image = torch.arange(0, 366777, 1, dtype=torch.uint8).reshape(3, 249, 491)
image_processor = image_processing_class(**self.image_processor_dict)
padded_image = image_processor.pad_image(image, size_divisor=4)
self.assertTrue(padded_image.shape[1] % 4 == 0)
self.assertTrue(padded_image.shape[2] % 4 == 0)
pixel_values = image_processor.preprocess(
image, do_rescale=False, do_resize=False, do_pad=True, size_divisor=4, return_tensors="pt"
).pixel_values
self.assertTrue(pixel_values.shape[2] % 4 == 0)
self.assertTrue(pixel_values.shape[3] % 4 == 0)
else:
image_processor = image_processing_class(**self.image_processor_dict)
image = np.random.randn(3, 249, 491)
image = image_processor.pad_image(image, size_divisor=4)
self.assertTrue(image.shape[1] % 4 == 0)
self.assertTrue(image.shape[2] % 4 == 0)
pixel_values = image_processor.preprocess(
image, do_rescale=False, do_resize=False, do_pad=True, size_divisor=4, return_tensors="pt"
).pixel_values
self.assertTrue(pixel_values.shape[2] % 4 == 0)
self.assertTrue(pixel_values.shape[3] % 4 == 0)
def test_keep_aspect_ratio(self):
size = {"height": 512, "width": 512}
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(size=size, keep_aspect_ratio=True, ensure_multiple_of=32)
image = np.zeros((489, 640, 3))
pixel_values = image_processor(image, return_tensors="pt").pixel_values
self.assertEqual(list(pixel_values.shape), [1, 3, 512, 672])
@unittest.skip("temporary to avoid failing on circleci")
# Copied from transformers.tests.models.beit.test_image_processing_beit.BeitImageProcessingTest.test_call_segmentation_maps
def test_call_segmentation_maps(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processor
image_processor = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
maps = []
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
maps.append(torch.zeros(image.shape[-2:]).long())
# Test not batched input
encoding = image_processor(image_inputs[0], maps[0], return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test batched
encoding = image_processor(image_inputs, maps, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test not batched input (PIL images)
image, segmentation_map = prepare_semantic_single_inputs()
encoding = image_processor(image, segmentation_map, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
1,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Test batched input (PIL images)
images, segmentation_maps = prepare_semantic_batch_inputs()
encoding = image_processor(images, segmentation_maps, return_tensors="pt")
self.assertEqual(
encoding["pixel_values"].shape,
(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(
encoding["labels"].shape,
(
2,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
),
)
self.assertEqual(encoding["labels"].dtype, torch.long)
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
@unittest.skip("temporary to avoid failing on circleci")
def test_reduce_labels(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
image, map = prepare_semantic_single_inputs()
encoding = image_processor(image, map, return_tensors="pt")
labels_no_reduce = encoding["labels"].clone()
self.assertTrue(labels_no_reduce.min().item() >= 0)
self.assertTrue(labels_no_reduce.max().item() <= 150)
# Get the first non-zero label coords and value, for comparison when do_reduce_labels is True
non_zero_positions = (labels_no_reduce > 0).nonzero()
first_non_zero_coords = tuple(non_zero_positions[0].tolist())
first_non_zero_value = labels_no_reduce[first_non_zero_coords].item()
image_processor.do_reduce_labels = True
encoding = image_processor(image, map, return_tensors="pt")
self.assertTrue(encoding["labels"].min().item() >= 0)
self.assertTrue(encoding["labels"].max().item() <= 255)
# Compare with non-reduced label to see if it's reduced by 1
self.assertEqual(encoding["labels"][first_non_zero_coords].item(), first_non_zero_value - 1)
@unittest.skip("temporary to avoid failing on circleci")
def test_slow_fast_equivalence(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
dummy_image, dummy_map = prepare_semantic_single_inputs()
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
image_encoding_slow = image_processor_slow(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
image_encoding_fast = image_processor_fast(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
self.assertTrue(torch.allclose(image_encoding_slow.pixel_values, image_encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(image_encoding_slow.pixel_values - image_encoding_fast.pixel_values)).item(), 1e-3
)
self.assertTrue(torch.allclose(image_encoding_slow.labels, image_encoding_fast.labels, atol=1e-1))
@unittest.skip("temporary to avoid failing on circleci")
def test_slow_fast_equivalence_batched(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images, dummy_maps = prepare_semantic_batch_inputs()
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)