transformers/transformers/modeling_encoder_decoder.py
Francesco 3df1d2d144 - Create the output directory (whose name is passed by the user in the "save_directory" parameter) where it will be saved encoder and decoder, if not exists.
- Empty the output directory, if it contains any files or subdirectories.
- Create the "encoder" directory inside "save_directory", if not exists.
- Create the "decoder" directory inside "save_directory", if not exists.
- Save the encoder and the decoder in the previous two directories, respectively.
2019-12-20 17:21:24 -05:00

342 lines
17 KiB
Python

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Classes to support Encoder-Decoder architectures """
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import os
import torch
from torch import nn
from .modeling_auto import AutoModel, AutoModelWithLMHead
logger = logging.getLogger(__name__)
class PreTrainedEncoderDecoder(nn.Module):
r"""
:class:`~transformers.PreTrainedEncoderDecoder` is a generic model class that will be
instantiated as a transformer architecture with one of the base model
classes of the library as encoder and (optionally) another one as
decoder when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
class method.
"""
def __init__(self, encoder, decoder):
super(PreTrainedEncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
@classmethod
def from_pretrained(
cls,
encoder_pretrained_model_name_or_path=None,
decoder_pretrained_model_name_or_path=None,
*model_args,
**kwargs
):
r""" Instantiates an encoder and a decoder from one or two base classes of the library from pre-trained model checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you need to first set it back in training mode with `model.train()`
Params:
encoder_pretrained_model_name_or_path: information necessary to initiate the encoder. Either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/encoder``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
decoder_pretrained_model_name_or_path: information necessary to initiate the decoder. Either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/decoder``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments.
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
You can specify kwargs sepcific for the encoder and decoder by prefixing the key with `encoder_` and `decoder_` respectively. (e.g. ``decoder_output_attention=True``). The remaining kwargs will be passed to both encoders and decoders.
Examples::
model = PreTrainedEncoderDecoder.from_pretained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert
"""
# keyword arguments come in 3 flavors: encoder-specific (prefixed by
# `encoder_`), decoder-specific (prefixed by `decoder_`) and those
# that apply to the model as a whole.
# We let the specific kwargs override the common ones in case of conflict.
kwargs_common = {
argument: value
for argument, value in kwargs.items()
if not argument.startswith("encoder_")
and not argument.startswith("decoder_")
}
kwargs_decoder = kwargs_common.copy()
kwargs_encoder = kwargs_common.copy()
kwargs_encoder.update(
{
argument[len("encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("encoder_")
}
)
kwargs_decoder.update(
{
argument[len("decoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("decoder_")
}
)
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
encoder = AutoModel.from_pretrained(
encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder
)
encoder.config.is_decoder = False
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
decoder = AutoModelWithLMHead.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder
)
decoder.config.is_decoder = True
model = cls(encoder, decoder)
return model
def save_pretrained(self, save_directory):
""" Save a Seq2Seq model and its configuration file in a format such
that it can be loaded using `:func:`~transformers.PreTrainedEncoderDecoder.from_pretrained`
We save the encoder' and decoder's parameters in two separate directories.
"""
# If the root output directory does not exist, create it
if not os.path.exists(save_directory):
os.mkdir(save_directory)
# Check whether the output directory is empty or not
sub_directories = [directory for directory in os.listdir(save_directory)
if os.path.isdir(os.path.join(save_directory, directory))]
if len(sub_directories) > 0:
if "encoder" in sub_directories and "decoder" in sub_directories:
print("WARNING: there is an older version of encoder-decoder saved in" +\
" the output directory. The default behaviour is to overwrite them.")
# Empty the output directory
for directory_to_remove in sub_directories:
# Remove all files into the subdirectory
files_to_remove = os.listdir(os.path.join(save_directory, directory_to_remove))
for file_to_remove in files_to_remove:
os.remove(os.path.join(save_directory, directory_to_remove, file_to_remove))
# Remove the subdirectory itself
os.rmdir(os.path.join(save_directory, directory_to_remove))
assert(len(os.listdir(save_directory)) == 0) # sanity check
if not os.path.exists(os.path.join(save_directory, "encoder")):
os.mkdir(os.path.join(save_directory, "encoder"))
if not os.path.exists(os.path.join(save_directory, "decoder")):
os.mkdir(os.path.join(save_directory, "decoder"))
self.encoder.save_pretrained(os.path.join(save_directory, "encoder"))
self.decoder.save_pretrained(os.path.join(save_directory, "decoder"))
def forward(self, encoder_input_ids, decoder_input_ids, **kwargs):
""" The forward pass on a seq2eq depends what we are performing:
- During training we perform one forward pass through both the encoder
and decoder;
- During prediction, we perform one forward pass through the encoder,
and then perform several forward passes with the encoder's hidden
state through the decoder to decode a full sequence.
Therefore, we skip the forward pass on the encoder if an argument named
`encoder_hidden_state` is passed to this function.
Params:
encoder_input_ids: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``
Indices of encoder input sequence tokens in the vocabulary.
decoder_input_ids: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``
Indices of decoder input sequence tokens in the vocabulary.
kwargs: (`optional`) Remaining dictionary of keyword arguments.
"""
# keyword arguments come in 3 flavors: encoder-specific (prefixed by
# `encoder_`), decoder-specific (prefixed by `decoder_`) and those
# that apply to the model as whole.
# We let the specific kwargs override the common ones in case of conflict.
kwargs_common = {
argument: value
for argument, value in kwargs.items()
if not argument.startswith("encoder_")
and not argument.startswith("decoder_")
}
kwargs_decoder = kwargs_common.copy()
kwargs_encoder = kwargs_common.copy()
kwargs_encoder.update(
{
argument[len("encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("encoder_")
}
)
kwargs_decoder.update(
{
argument[len("decoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("decoder_")
}
)
# Encode if needed (training, first prediction pass)
encoder_hidden_states = kwargs_encoder.pop("hidden_states", None)
if encoder_hidden_states is None:
encoder_outputs = self.encoder(encoder_input_ids, **kwargs_encoder)
encoder_hidden_states = encoder_outputs[0]
else:
encoder_outputs = ()
# Decode
kwargs_decoder["encoder_hidden_states"] = encoder_hidden_states
kwargs_decoder["encoder_attention_mask"] = kwargs_encoder.get(
"attention_mask", None
)
decoder_outputs = self.decoder(decoder_input_ids, **kwargs_decoder)
return decoder_outputs + encoder_outputs
class Model2Model(PreTrainedEncoderDecoder):
r"""
:class:`~transformers.Model2Model` instantiates a Seq2Seq2 model
where both of the encoder and decoder are of the same family. If the
name of or that path to a pretrained model is specified the encoder and
the decoder will be initialized with the pretrained weight (the
cross-attention will be intialized randomly if its weights are not
present).
It is possible to override this behavior and initialize, say, the decoder randomly
by creating it beforehand as follows
config = BertConfig.from_pretrained()
decoder = BertForMaskedLM(config)
model = Model2Model.from_pretrained('bert-base-uncased', decoder_model=decoder)
"""
def __init__(self, *args, **kwargs):
super(Model2Model, self).__init__(*args, **kwargs)
self.tie_weights()
def tie_weights(self):
""" Tying the encoder and decoders' embeddings together.
We need for each to get down to the embedding weights. However the
different model classes are inconsistent to that respect:
- BertModel: embeddings.word_embeddings
- RoBERTa: embeddings.word_embeddings
- XLMModel: embeddings
- GPT2: wte
- BertForMaskedLM: bert.embeddings.word_embeddings
- RobertaForMaskedLM: roberta.embeddings.word_embeddings
argument of the XEmbedding layer for each model, but it is "blocked"
by a model-specific keyword (bert, )...
"""
# self._tie_or_clone_weights(self.encoder, self.decoder)
pass
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
if (
"bert" not in pretrained_model_name_or_path
or "roberta" in pretrained_model_name_or_path
or "distilbert" in pretrained_model_name_or_path
):
raise ValueError("Only the Bert model is currently supported.")
model = super(Model2Model, cls).from_pretrained(
encoder_pretrained_model_name_or_path=pretrained_model_name_or_path,
decoder_pretrained_model_name_or_path=pretrained_model_name_or_path,
*args,
**kwargs
)
return model
class Model2LSTM(PreTrainedEncoderDecoder):
@classmethod
def from_pretrained(cls, *args, **kwargs):
if kwargs.get("decoder_model", None) is None:
# We will create a randomly initilized LSTM model as decoder
if "decoder_config" not in kwargs:
raise ValueError(
"To load an LSTM in Encoder-Decoder model, please supply either: "
" - a torch.nn.LSTM model as `decoder_model` parameter (`decoder_model=lstm_model`), or"
" - a dictionary of configuration parameters that will be used to initialize a"
" torch.nn.LSTM model as `decoder_config` keyword argument. "
" E.g. `decoder_config={'input_size': 768, 'hidden_size': 768, 'num_layers': 2}`"
)
kwargs["decoder_model"] = torch.nn.LSTM(kwargs.pop("decoder_config"))
model = super(Model2LSTM, cls).from_pretrained(*args, **kwargs)
return model