mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
105 lines
4.8 KiB
ReStructuredText
105 lines
4.8 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
CTRL
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
CTRL model was proposed in `CTRL: A Conditional Transformer Language Model for Controllable Generation
|
|
<https://arxiv.org/abs/1909.05858>`_ by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and
|
|
Richard Socher. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus
|
|
of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Large-scale language models show promising text generation capabilities, but users cannot easily control particular
|
|
aspects of the generated text. We release CTRL, a 1.63 billion-parameter conditional transformer language model,
|
|
trained to condition on control codes that govern style, content, and task-specific behavior. Control codes were
|
|
derived from structure that naturally co-occurs with raw text, preserving the advantages of unsupervised learning while
|
|
providing more explicit control over text generation. These codes also allow CTRL to predict which parts of the
|
|
training data are most likely given a sequence. This provides a potential method for analyzing large amounts of data
|
|
via model-based source attribution.*
|
|
|
|
Tips:
|
|
|
|
- CTRL makes use of control codes to generate text: it requires generations to be started by certain words, sentences
|
|
or links to generate coherent text. Refer to the `original implementation <https://github.com/salesforce/ctrl>`__ for
|
|
more information.
|
|
- CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
|
the left.
|
|
- CTRL was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
|
|
token in a sequence. Leveraging this feature allows CTRL to generate syntactically coherent text as it can be
|
|
observed in the `run_generation.py` example script.
|
|
- The PyTorch models can take the `past` as input, which is the previously computed key/value attention pairs. Using
|
|
this `past` value prevents the model from re-computing pre-computed values in the context of text generation. See
|
|
`reusing the past in generative models <../quickstart.html#using-the-past>`__ for more information on the usage of
|
|
this argument.
|
|
|
|
The original code can be found `here <https://github.com/salesforce/ctrl>`__.
|
|
|
|
|
|
CTRLConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.CTRLConfig
|
|
:members:
|
|
|
|
|
|
CTRLTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.CTRLTokenizer
|
|
:members: save_vocabulary
|
|
|
|
|
|
CTRLModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.CTRLModel
|
|
:members: forward
|
|
|
|
|
|
CTRLLMHeadModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.CTRLLMHeadModel
|
|
:members: forward
|
|
|
|
|
|
CTRLForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.CTRLForSequenceClassification
|
|
:members: forward
|
|
|
|
|
|
TFCTRLModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFCTRLModel
|
|
:members: call
|
|
|
|
|
|
TFCTRLLMHeadModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFCTRLLMHeadModel
|
|
:members: call
|
|
|
|
TFCTRLForSequenceClassification
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.TFCTRLForSequenceClassification
|
|
:members: call
|