mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 09:40:06 +06:00

* Add first draft * Use appropriate gelu function * More improvements * More improvements * More improvements * Convert checkpoint * More improvements * Improve docs, remove print statements * More improvements * Add link * remove unused masking function * begin tokenizer * do_lower_case * debug * set split_special_tokens=True * Remove script * Fix style * Fix rebase * Use same design as CLIP * Add fast tokenizer * Add SiglipTokenizer to init, remove extra_ids * Improve conversion script * Use smaller inputs in conversion script * Update conversion script * More improvements * Add processor to conversion script * Add tests * Remove print statements * Add tokenizer tests * Fix more tests * More improvements related to weight initialization * More improvements * Make more tests pass * More improvements * More improvements * Add copied from * Add canonicalize_text * Enable fast tokenizer tests * More improvements * Fix most slow tokenizer tests * Address comments * Fix style * Remove script * Address some comments * Add copied from to tests * Add more copied from * Add more copied from * Add more copied from * Remove is_flax_available * More updates * Address comment * Remove SiglipTokenizerFast for now * Add caching * Remove umt5 test * Add canonicalize_text inside _tokenize, thanks Arthur * Fix image processor tests * Skip tests which are not applicable * Skip test_initialization * More improvements * Compare pixel values * Fix doc tests, add integration test * Add do_normalize * Remove causal mask and leverage ignore copy * Fix attention_mask * Fix remaining tests * Fix dummies * Rename temperature and bias * Address comments * Add copied from to tokenizer tests * Add SiglipVisionModel to auto mapping * Add copied from to image processor tests * Improve doc * Remove SiglipVisionModel from index * Address comments * Improve docs * Simplify config * Add first draft * Make it like mistral * More improvements * Fix attention_mask * Fix output_attentions * Add note in docs * Convert multilingual model * Convert large checkpoint * Convert more checkpoints * Add pipeline support, correct image_mean and image_std * Use padding=max_length by default * Make processor like llava * Add code snippet * Convert more checkpoints * Set keep_punctuation_string=None as in OpenCLIP * Set normalized=False for special tokens * Fix doc test * Update integration test * Add figure * Update organization * Happy new year * Use AutoModel everywhere --------- Co-authored-by: patil-suraj <surajp815@gmail.com>
226 lines
11 KiB
Python
226 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Image processor class for SigLIP."""
|
|
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
|
from ...image_transforms import (
|
|
resize,
|
|
to_channel_dimension_format,
|
|
)
|
|
from ...image_utils import (
|
|
IMAGENET_STANDARD_MEAN,
|
|
IMAGENET_STANDARD_STD,
|
|
ChannelDimension,
|
|
ImageInput,
|
|
PILImageResampling,
|
|
infer_channel_dimension_format,
|
|
is_scaled_image,
|
|
make_list_of_images,
|
|
to_numpy_array,
|
|
valid_images,
|
|
)
|
|
from ...utils import TensorType, is_vision_available, logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
if is_vision_available():
|
|
import PIL
|
|
|
|
|
|
class SiglipImageProcessor(BaseImageProcessor):
|
|
r"""
|
|
Constructs a SigLIP image processor.
|
|
|
|
Args:
|
|
do_resize (`bool`, *optional*, defaults to `True`):
|
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
|
`do_resize` in the `preprocess` method.
|
|
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
|
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
|
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
|
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
|
the `preprocess` method.
|
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
|
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
|
method.
|
|
do_normalize (`bool`, *optional*, defaults to `True`):
|
|
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
|
`do_normalize` in the `preprocess` method.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
"""
|
|
|
|
model_input_names = ["pixel_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
do_resize: bool = True,
|
|
size: Dict[str, int] = None,
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
do_rescale: bool = True,
|
|
rescale_factor: Union[int, float] = 1 / 255,
|
|
do_normalize: bool = True,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
size = size if size is not None else {"height": 224, "width": 224}
|
|
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
|
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
|
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.resample = resample
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def preprocess(
|
|
self,
|
|
images: ImageInput,
|
|
do_resize: bool = None,
|
|
size: Dict[str, int] = None,
|
|
resample: PILImageResampling = None,
|
|
do_rescale: bool = None,
|
|
rescale_factor: float = None,
|
|
do_normalize: bool = None,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> PIL.Image.Image:
|
|
"""
|
|
Preprocess an image or batch of images.
|
|
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
|
Whether to resize the image.
|
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
|
Size of the image after resizing.
|
|
resample (`int`, *optional*, defaults to `self.resample`):
|
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
|
has an effect if `do_resize` is set to `True`.
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
Whether to rescale the image.
|
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
|
Whether to normalize the image.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
|
`True`.
|
|
return_tensors (`str` or `TensorType`, *optional*):
|
|
The type of tensors to return. Can be one of:
|
|
- Unset: Return a list of `np.ndarray`.
|
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- Unset: Use the channel dimension format of the input image.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
"""
|
|
do_resize = do_resize if do_resize is not None else self.do_resize
|
|
size = size if size is not None else self.size
|
|
size = get_size_dict(size, param_name="size", default_to_square=False)
|
|
resample = resample if resample is not None else self.resample
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
|
image_mean = image_mean if image_mean is not None else self.image_mean
|
|
image_std = image_std if image_std is not None else self.image_std
|
|
|
|
images = make_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError(
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
|
)
|
|
|
|
if do_resize and size is None:
|
|
raise ValueError("Size must be specified if do_resize is True.")
|
|
|
|
if do_rescale and rescale_factor is None:
|
|
raise ValueError("Rescale factor must be specified if do_rescale is True.")
|
|
|
|
# All transformations expect numpy arrays.
|
|
images = [to_numpy_array(image) for image in images]
|
|
|
|
if is_scaled_image(images[0]) and do_rescale:
|
|
logger.warning_once(
|
|
"It looks like you are trying to rescale already rescaled images. If the input"
|
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
|
)
|
|
|
|
if input_data_format is None:
|
|
# We assume that all images have the same channel dimension format.
|
|
input_data_format = infer_channel_dimension_format(images[0])
|
|
|
|
if do_resize:
|
|
height, width = size["height"], size["width"]
|
|
images = [
|
|
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
if do_rescale:
|
|
images = [
|
|
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
if do_normalize:
|
|
images = [
|
|
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
|
for image in images
|
|
]
|
|
|
|
images = [
|
|
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
|
]
|
|
|
|
data = {"pixel_values": images}
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|