mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-27 08:18:58 +06:00
203 lines
8.1 KiB
Python
203 lines
8.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tokenization classes for RoBERTa."""
|
|
from __future__ import (absolute_import, division, print_function,
|
|
unicode_literals)
|
|
|
|
import sys
|
|
import json
|
|
import logging
|
|
import os
|
|
import regex as re
|
|
from io import open
|
|
|
|
from .tokenization_gpt2 import bytes_to_unicode, get_pairs
|
|
from .tokenization_utils import PreTrainedTokenizer
|
|
|
|
try:
|
|
from functools import lru_cache
|
|
except ImportError:
|
|
# Just a dummy decorator to get the checks to run on python2
|
|
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
|
|
def lru_cache():
|
|
return lambda func: func
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
VOCAB_FILES_NAMES = {
|
|
'vocab_file': 'vocab.json',
|
|
'merges_file': 'merges.txt',
|
|
}
|
|
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
'vocab_file':
|
|
{
|
|
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-vocab.json",
|
|
'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json",
|
|
'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-vocab.json",
|
|
},
|
|
'merges_file':
|
|
{
|
|
'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-merges.txt",
|
|
'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-merges.txt",
|
|
'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-merges.txt",
|
|
},
|
|
}
|
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
'roberta-base': 512,
|
|
'roberta-large': 512,
|
|
'roberta-large-mnli': 512,
|
|
}
|
|
|
|
|
|
class RobertaTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
RoBERTa BPE tokenizer, derived from the GPT-2 tokenizer. Peculiarities:
|
|
- Byte-level BPE
|
|
"""
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
|
|
def __init__(self, vocab_file, merges_file, errors='replace', bos_token="<s>", eos_token="</s>", sep_token="</s>",
|
|
cls_token="<s>", unk_token="<unk>", pad_token='<pad>', mask_token='<mask>', **kwargs):
|
|
super(RobertaTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token,
|
|
sep_token=sep_token, cls_token=cls_token, pad_token=pad_token,
|
|
mask_token=mask_token, **kwargs)
|
|
|
|
self.encoder = json.load(open(vocab_file, encoding="utf-8"))
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
self.errors = errors # how to handle errors in decoding
|
|
self.byte_encoder = bytes_to_unicode()
|
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
|
|
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
|
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
|
self.cache = {}
|
|
|
|
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
|
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.encoder)
|
|
|
|
def bpe(self, token):
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
word = tuple(token)
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token
|
|
|
|
while True:
|
|
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
except:
|
|
new_word.extend(word[i:])
|
|
break
|
|
|
|
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
|
new_word.append(first+second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = ' '.join(word)
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def _tokenize(self, text):
|
|
""" Tokenize a string. """
|
|
bpe_tokens = []
|
|
for token in re.findall(self.pat, text):
|
|
if sys.version_info[0] == 2:
|
|
token = ''.join(self.byte_encoder[ord(b)] for b in token)
|
|
else:
|
|
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
|
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
|
|
return bpe_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str/unicode) in an id using the vocab. """
|
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
|
|
return self.decoder.get(index)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
""" Converts a sequence of tokens (string) in a single string. """
|
|
text = ''.join(tokens)
|
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
|
|
return text
|
|
|
|
def add_special_tokens_single_sentence(self, token_ids):
|
|
"""
|
|
Adds special tokens to a sequence for sequence classification tasks.
|
|
A RoBERTa sequence has the following format: [CLS] X [SEP]
|
|
"""
|
|
return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]
|
|
|
|
def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
|
|
"""
|
|
Adds special tokens to a sequence pair for sequence classification tasks.
|
|
A RoBERTa sequence pair has the following format: [CLS] A [SEP][SEP] B [SEP]
|
|
"""
|
|
sep = [self._convert_token_to_id(self.sep_token)]
|
|
cls = [self._convert_token_to_id(self.cls_token)]
|
|
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
|
|
|
def save_vocabulary(self, save_directory):
|
|
"""Save the tokenizer vocabulary and merge files to a directory."""
|
|
if not os.path.isdir(save_directory):
|
|
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
|
return
|
|
vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
|
|
merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
|
|
|
|
with open(vocab_file, 'w', encoding='utf-8') as f:
|
|
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
|
|
|
index = 0
|
|
with open(merge_file, "w", encoding="utf-8") as writer:
|
|
writer.write(u'#version: 0.2\n')
|
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
|
|
" Please check that the tokenizer is not corrupted!".format(merge_file))
|
|
index = token_index
|
|
writer.write(' '.join(bpe_tokens) + u'\n')
|
|
index += 1
|
|
|
|
return vocab_file, merge_file
|