transformers/tests/pipelines/test_pipelines_image_segmentation.py
Nicolas Patry 3822e4a563
Enabling MaskFormer in pipelines (#15917)
* Enabling MaskFormer in ppipelines

No AutoModel though :(

* Ooops local file.
2022-03-03 16:31:41 +01:00

344 lines
14 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import unittest
import datasets
from datasets import load_dataset
from transformers import (
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
AutoFeatureExtractor,
AutoModelForImageSegmentation,
DetrForSegmentation,
ImageSegmentationPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
def hashimage(image: Image) -> str:
m = hashlib.md5(image.tobytes())
return m.hexdigest()
@require_vision
@require_timm
@require_torch
@is_pipeline_test
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = {
k: v
for k, v in (
list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
)
+ (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
}
def get_test_pipeline(self, model, tokenizer, feature_extractor):
image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def run_pipeline_test(self, image_segmenter, examples):
outputs = image_segmenter("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0)
self.assertIsInstance(outputs, list)
n = len(outputs)
self.assertGreater(n, 1)
# XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
# to make it work
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
# RGBA
outputs = image_segmenter(dataset[0]["file"])
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# LA
outputs = image_segmenter(dataset[1]["file"])
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# L
outputs = image_segmenter(dataset[2]["file"])
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
if isinstance(image_segmenter.model, DetrForSegmentation):
# We need to test batch_size with images with the same size.
# Detr doesn't normalize the size of the images, meaning we can have
# 800x800 or 800x1200, meaning we cannot batch simply.
# We simply bail on this
batch_size = 1
else:
batch_size = 2
# 5 times the same image so the output shape is predictable
batch = [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
outputs = image_segmenter(batch, threshold=0.0, batch_size=batch_size)
self.assertEqual(len(batch), len(outputs))
self.assertEqual({"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}, outputs[0][0])
self.assertEqual(len(outputs[0]), n)
self.assertEqual(
[
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
],
outputs,
f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
)
@require_tf
@unittest.skip("Image segmentation not implemented in TF")
def test_small_model_tf(self):
pass
@require_torch
def test_small_model_pt(self):
model_id = "mishig/tiny-detr-mobilenetsv3-panoptic"
model = AutoModelForImageSegmentation.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0)
for o in outputs:
# shortening by hashing
o["mask"] = hashimage(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.004,
"label": "LABEL_0",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
},
{
"score": 0.004,
"label": "LABEL_0",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
},
],
)
outputs = image_segmenter(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
threshold=0.0,
)
for output in outputs:
for o in output:
o["mask"] = hashimage(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{
"score": 0.004,
"label": "LABEL_0",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
},
{
"score": 0.004,
"label": "LABEL_0",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
},
],
[
{
"score": 0.004,
"label": "LABEL_0",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
},
{
"score": 0.004,
"label": "LABEL_0",
"mask": "34eecd16bbfb0f476083ef947d81bf66",
},
],
],
)
@require_torch
def test_small_model_pt_semantic(self):
model_id = "hf-internal-testing/tiny-random-beit-pipeline"
image_segmenter = pipeline(model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
for o in outputs:
# shortening by hashing
o["mask"] = hashimage(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": None,
"label": "LABEL_0",
"mask": "6225140faf502d272af076222776d7e4",
},
{
"score": None,
"label": "LABEL_1",
"mask": "8297c9f8eb43ddd3f32a6dae21e015a1",
},
],
)
@require_torch
@slow
def test_integration_torch_image_segmentation(self):
model_id = "facebook/detr-resnet-50-panoptic"
image_segmenter = pipeline("image-segmentation", model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
for o in outputs:
o["mask"] = hashimage(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9094, "label": "blanket", "mask": "36517c16f4356f7af4b298f4eae387f9fe37eaf8"},
{"score": 0.9941, "label": "cat", "mask": "d63196cbe08c7655c158dbabbc5e6b413cbb3b2d"},
{"score": 0.9987, "label": "remote", "mask": "4e190e0c3934ad852aaa51aa2c54e314b9a1152e"},
{"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
{"score": 0.9722, "label": "couch", "mask": "df5815755b6bcf328f6b6811f8794cad26f79b35"},
{"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
],
)
outputs = image_segmenter(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
threshold=0.0,
)
for output in outputs:
for o in output:
o["mask"] = hashlib.sha1(o["mask"].encode("UTF-8")).hexdigest()
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9094, "label": "blanket", "mask": "36517c16f4356f7af4b298f4eae387f9fe37eaf8"},
{"score": 0.9941, "label": "cat", "mask": "d63196cbe08c7655c158dbabbc5e6b413cbb3b2d"},
{"score": 0.9987, "label": "remote", "mask": "4e190e0c3934ad852aaa51aa2c54e314b9a1152e"},
{"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
{"score": 0.9722, "label": "couch", "mask": "df5815755b6bcf328f6b6811f8794cad26f79b35"},
{"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
],
[
{"score": 0.9094, "label": "blanket", "mask": "36517c16f4356f7af4b298f4eae387f9fe37eaf8"},
{"score": 0.9941, "label": "cat", "mask": "d63196cbe08c7655c158dbabbc5e6b413cbb3b2d"},
{"score": 0.9987, "label": "remote", "mask": "4e190e0c3934ad852aaa51aa2c54e314b9a1152e"},
{"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
{"score": 0.9722, "label": "couch", "mask": "df5815755b6bcf328f6b6811f8794cad26f79b35"},
{"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
],
],
)
@require_torch
@slow
def test_threshold(self):
threshold = 0.999
model_id = "facebook/detr-resnet-50-panoptic"
image_segmenter = pipeline("image-segmentation", model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=threshold)
for o in outputs:
o["mask"] = hashimage(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
{"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
],
)
@require_torch
@slow
def test_maskformer(self):
threshold = 0.999
model_id = "facebook/maskformer-swin-base-ade"
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
model = MaskFormerForInstanceSegmentation.from_pretrained(model_id)
feature_extractor = MaskFormerFeatureExtractor.from_pretrained(model_id)
image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)
image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
outputs = image_segmenter(image[0]["file"], threshold=threshold)
for o in outputs:
o["mask"] = hashimage(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"mask": "20d1b9480d1dc1501dbdcfdff483e370", "label": "wall", "score": None},
{"mask": "0f902fbc66a0ff711ea455b0e4943adf", "label": "house", "score": None},
{"mask": "4537bdc07d47d84b3f8634b7ada37bd4", "label": "grass", "score": None},
{"mask": "b7ac77dfae44a904b479a0926a2acaf7", "label": "tree", "score": None},
{"mask": "e9bedd56bd40650fb263ce03eb621079", "label": "plant", "score": None},
{"mask": "37a609f8c9c1b8db91fbff269f428b20", "label": "road, route", "score": None},
{"mask": "0d8cdfd63bae8bf6e4344d460a2fa711", "label": "sky", "score": None},
],
)