transformers/model_cards/twmkn9/albert-base-v2-squad2
2020-03-09 19:37:15 -04:00
..
README.md Model card for albert-base-v2-squad2 2020-03-09 19:37:15 -04:00

This model is ALBERT base v2 trained on SQuAD v2 as:

python run_squad.py 
--model_type albert 
--model_name_or_path albert-base-v2 
--do_train --do_eval 
--do_lower_case 
--version_2_with_negative 
--train_file $SQUAD_DIR/train-v2.0.json 
--predict_file $SQUAD_DIR/dev-v2.0.json 
--per_gpu_train_batch_size 8 
--num_train_epochs 3 
--learning_rate 3e-5 
--max_seq_length 384 
--doc_stride 128 
--output_dir ./tmp/albert_base_fine/

Performance on a dev subset is close to the original paper:

Results: 
{
    'exact': 78.71010200723923, 
    'f1': 81.89228117126069, 
    'total': 6078, 
    'HasAns_exact': 75.39518900343643, 
    'HasAns_f1': 82.04167868004215, 
    'HasAns_total': 2910, 
    'NoAns_exact': 81.7550505050505, 
    'NoAns_f1': 81.7550505050505, 
    'NoAns_total': 3168, 
    'best_exact': 78.72655478775913, 
    'best_exact_thresh': 0.0, 
    'best_f1': 81.90873395178066, 
    'best_f1_thresh': 0.0
}

We are hopeful this might save you time, energy, and compute. Cheers!