mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00
187 lines
6.7 KiB
Python
187 lines
6.7 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from huggingface_hub import HfFolder, delete_repo
|
|
from requests.exceptions import HTTPError
|
|
|
|
from transformers import BertConfig, is_flax_available
|
|
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
|
|
|
|
|
|
if is_flax_available():
|
|
import os
|
|
|
|
from flax.core.frozen_dict import unfreeze
|
|
from flax.traverse_util import flatten_dict
|
|
|
|
from transformers import FlaxBertModel
|
|
|
|
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.12" # assumed parallelism: 8
|
|
|
|
|
|
@require_flax
|
|
@is_staging_test
|
|
class FlaxModelPushToHubTester(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._token = TOKEN
|
|
HfFolder.save_token(TOKEN)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
try:
|
|
delete_repo(token=cls._token, repo_id="test-model-flax")
|
|
except HTTPError:
|
|
pass
|
|
|
|
try:
|
|
delete_repo(token=cls._token, repo_id="valid_org/test-model-flax-org")
|
|
except HTTPError:
|
|
pass
|
|
|
|
def test_push_to_hub(self):
|
|
config = BertConfig(
|
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
|
|
)
|
|
model = FlaxBertModel(config)
|
|
model.push_to_hub("test-model-flax", use_auth_token=self._token)
|
|
|
|
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
|
|
|
|
base_params = flatten_dict(unfreeze(model.params))
|
|
new_params = flatten_dict(unfreeze(new_model.params))
|
|
|
|
for key in base_params.keys():
|
|
max_diff = (base_params[key] - new_params[key]).sum().item()
|
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
|
|
|
# Reset repo
|
|
delete_repo(token=self._token, repo_id="test-model-flax")
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir, repo_id="test-model-flax", push_to_hub=True, use_auth_token=self._token)
|
|
|
|
new_model = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax")
|
|
|
|
base_params = flatten_dict(unfreeze(model.params))
|
|
new_params = flatten_dict(unfreeze(new_model.params))
|
|
|
|
for key in base_params.keys():
|
|
max_diff = (base_params[key] - new_params[key]).sum().item()
|
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
|
|
|
def test_push_to_hub_in_organization(self):
|
|
config = BertConfig(
|
|
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
|
|
)
|
|
model = FlaxBertModel(config)
|
|
model.push_to_hub("valid_org/test-model-flax-org", use_auth_token=self._token)
|
|
|
|
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
|
|
|
|
base_params = flatten_dict(unfreeze(model.params))
|
|
new_params = flatten_dict(unfreeze(new_model.params))
|
|
|
|
for key in base_params.keys():
|
|
max_diff = (base_params[key] - new_params[key]).sum().item()
|
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
|
|
|
# Reset repo
|
|
delete_repo(token=self._token, repo_id="valid_org/test-model-flax-org")
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(
|
|
tmp_dir, repo_id="valid_org/test-model-flax-org", push_to_hub=True, use_auth_token=self._token
|
|
)
|
|
|
|
new_model = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org")
|
|
|
|
base_params = flatten_dict(unfreeze(model.params))
|
|
new_params = flatten_dict(unfreeze(new_model.params))
|
|
|
|
for key in base_params.keys():
|
|
max_diff = (base_params[key] - new_params[key]).sum().item()
|
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
|
|
|
|
|
def check_models_equal(model1, model2):
|
|
models_are_equal = True
|
|
flat_params_1 = flatten_dict(model1.params)
|
|
flat_params_2 = flatten_dict(model2.params)
|
|
for key in flat_params_1.keys():
|
|
if np.sum(np.abs(flat_params_1[key] - flat_params_2[key])) > 1e-4:
|
|
models_are_equal = False
|
|
|
|
return models_are_equal
|
|
|
|
|
|
@require_flax
|
|
class FlaxModelUtilsTest(unittest.TestCase):
|
|
def test_model_from_pretrained_subfolder(self):
|
|
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
|
|
model = FlaxBertModel(config)
|
|
|
|
subfolder = "bert"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(os.path.join(tmp_dir, subfolder))
|
|
|
|
with self.assertRaises(OSError):
|
|
_ = FlaxBertModel.from_pretrained(tmp_dir)
|
|
|
|
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)
|
|
|
|
self.assertTrue(check_models_equal(model, model_loaded))
|
|
|
|
def test_model_from_pretrained_subfolder_sharded(self):
|
|
config = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
|
|
model = FlaxBertModel(config)
|
|
|
|
subfolder = "bert"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")
|
|
|
|
with self.assertRaises(OSError):
|
|
_ = FlaxBertModel.from_pretrained(tmp_dir)
|
|
|
|
model_loaded = FlaxBertModel.from_pretrained(tmp_dir, subfolder=subfolder)
|
|
|
|
self.assertTrue(check_models_equal(model, model_loaded))
|
|
|
|
def test_model_from_pretrained_hub_subfolder(self):
|
|
subfolder = "bert"
|
|
model_id = "hf-internal-testing/tiny-random-bert-subfolder"
|
|
|
|
with self.assertRaises(OSError):
|
|
_ = FlaxBertModel.from_pretrained(model_id)
|
|
|
|
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)
|
|
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_model_from_pretrained_hub_subfolder_sharded(self):
|
|
subfolder = "bert"
|
|
model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
|
|
with self.assertRaises(OSError):
|
|
_ = FlaxBertModel.from_pretrained(model_id)
|
|
|
|
model = FlaxBertModel.from_pretrained(model_id, subfolder=subfolder)
|
|
|
|
self.assertIsNotNone(model)
|