transformers/tests/models/esm/test_modeling_esm.py
Matt 368b649af6
Rebase ESM PR and update all file formats (#19055)
* Rebase ESM PR and update all file formats

* Fix test relative imports

* Add __init__.py to the test dir

* Disable gradient checkpointing

* Remove references to TFESM... FOR NOW >:|

* Remove completed TODOs from tests

* Convert docstrings to mdx, fix-copies from BERT

* fix-copies for the README and index

* Update ESM's __init__.py to the modern format

* Add to _toctree.yml

* Ensure we correctly copy the pad_token_id from the original ESM model

* Ensure we correctly copy the pad_token_id from the original ESM model

* Tiny grammar nitpicks

* Make the layer norm after embeddings an optional flag

* Make the layer norm after embeddings an optional flag

* Update the conversion script to handle other model classes

* Remove token_type_ids entirely, fix attention_masking and add checks to convert_esm.py

* Break the copied from link from BertModel.forward to remove token_type_ids

* Remove debug array saves

* Begin ESM-2 porting

* Add a hacky workaround for the precision issue in original repo

* Code cleanup

* Remove unused checkpoint conversion code

* Remove unused checkpoint conversion code

* Fix copyright notices

* Get rid of all references to the TF weights conversion

* Remove token_type_ids from the tests

* Fix test code

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add credit

* Remove _ args and __ kwargs in rotary embedding

* Assertively remove asserts

* Replace einsum with torch.outer()

* Fix docstring formatting

* Remove assertions in tokenization

* Add paper citation to ESMModel docstring

* Move vocab list to single line

* Remove ESMLayer from init

* Add Facebook copyrights

* Clean up RotaryEmbedding docstring

* Fix docstring formatting

* Fix docstring for config object

* Add explanation for new config methods

* make fix-copies

* Rename all the ESM- classes to Esm-

* Update conversion script to allow pushing to hub

* Update tests to point at my repo for now

* Set config properly for tests

* Remove the gross hack that forced loss of precision in inv_freq and instead copy the data from the model being converted

* make fixup

* Update expected values for slow tests

* make fixup

* Remove EsmForCausalLM for now

* Remove EsmForCausalLM for now

* Fix padding idx test

* Updated README and docs with ESM-1b and ESM-2 separately (#19221)

* Updated README and docs with ESM-1b and ESM-2 separately

* Update READMEs, longer entry with 3 citations

* make fix-copies

Co-authored-by: Your Name <you@example.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Tom Sercu <tsercu@fb.com>
Co-authored-by: Your Name <you@example.com>
2022-09-30 14:16:25 +01:00

294 lines
12 KiB
Python

# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ESM model. """
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
# copied from tests.test_modeling_roberta
class EsmModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = False
self.use_input_mask = True
self.use_token_type_ids = False
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return EsmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
pad_token_id=1,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = EsmModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = EsmForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = EsmForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class EsmModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
test_mismatched_shapes = False
all_model_classes = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = ()
test_sequence_classification_problem_types = True
def setUp(self):
self.model_tester = EsmModelTester(self)
self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = EsmModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_create_position_ids_respects_padding_index(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is EsmEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = EsmEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is EsmEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = EsmEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
@require_torch
class EsmModelIntegrationTest(TestCasePlus):
@slow
def test_inference_masked_lm(self):
model = EsmForMaskedLM.from_pretrained("Rocketknight1/esm-2-8m")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
vocab_size = 33
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[15.0973, -6.6406, -1.1351], [-0.2209, -9.9622, 4.2109], [-1.6055, -10.0023, 1.5914]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
def test_inference_no_head(self):
model = EsmModel.from_pretrained("Rocketknight1/esm-2-8m")
input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
output = model(input_ids)[0]
# compare the actual values for a slice.
expected_slice = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
def test_lm_head_ignore_keys(self):
from copy import deepcopy
keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"]
config = EsmConfig.from_pretrained("Rocketknight1/esm-2-8m")
config_tied = deepcopy(config)
config_tied.tie_word_embeddings = True
config_untied = deepcopy(config)
config_untied.tie_word_embeddings = False
for cls in [EsmForMaskedLM]:
model = cls(config_tied)
self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls)
# the keys should be different when embeddings aren't tied
model = cls(config_untied)
self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls)
# test that saving works with updated ignore keys - just testing that it doesn't fail
model.save_pretrained(self.get_auto_remove_tmp_dir())