transformers/examples/summarization/utils.py
Anthony MOI 36434220fc
[HUGE] Refactoring tokenizers backend - padding - truncation - pre-tokenized pipeline - fast tokenizers - tests (#4510)
* Use tokenizers pre-tokenized pipeline

* failing pretrokenized test

* Fix is_pretokenized in python

* add pretokenized tests

* style and quality

* better tests for batched pretokenized inputs

* tokenizers clean up - new padding_strategy - split the files

* [HUGE] refactoring tokenizers - padding - truncation - tests

* style and quality

* bump up requied tokenizers version to 0.8.0-rc1

* switched padding/truncation API - simpler better backward compat

* updating tests for custom tokenizers

* style and quality - tests on pad

* fix QA pipeline

* fix backward compatibility for max_length only

* style and quality

* Various cleans up - add verbose

* fix tests

* update docstrings

* Fix tests

* Docs reformatted

* __call__ method documented

Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2020-06-15 17:12:51 -04:00

66 lines
2.5 KiB
Python

import os
import torch
from torch.utils.data import Dataset
def encode_file(tokenizer, data_path, max_length, pad_to_max_length=True, return_tensors="pt"):
examples = []
with open(data_path, "r") as f:
for text in f.readlines():
tokenized = tokenizer.batch_encode_plus(
[text], max_length=max_length, pad_to_max_length=pad_to_max_length, return_tensors=return_tensors,
)
examples.append(tokenized)
return examples
def trim_batch(
input_ids, pad_token_id, attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class SummarizationDataset(Dataset):
def __init__(
self,
tokenizer,
data_dir="./cnn-dailymail/cnn_dm/",
type_path="train",
max_source_length=1024,
max_target_length=56,
):
super().__init__()
self.tokenizer = tokenizer
self.source = encode_file(tokenizer, os.path.join(data_dir, type_path + ".source"), max_source_length)
self.target = encode_file(tokenizer, os.path.join(data_dir, type_path + ".target"), max_target_length)
def __len__(self):
return len(self.source)
def __getitem__(self, index):
source_ids = self.source[index]["input_ids"].squeeze()
target_ids = self.target[index]["input_ids"].squeeze()
src_mask = self.source[index]["attention_mask"].squeeze()
return {"source_ids": source_ids, "source_mask": src_mask, "target_ids": target_ids}
@staticmethod
def trim_seq2seq_batch(batch, pad_token_id):
y = trim_batch(batch["target_ids"], pad_token_id)
source_ids, source_mask = trim_batch(batch["source_ids"], pad_token_id, attention_mask=batch["source_mask"])
return source_ids, source_mask, y
def collate_fn(self, batch):
input_ids = torch.stack([x["source_ids"] for x in batch])
masks = torch.stack([x["source_mask"] for x in batch])
target_ids = torch.stack([x["target_ids"] for x in batch])
pad_token_id = self.tokenizer.pad_token_id
y = trim_batch(target_ids, pad_token_id)
source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
return {"source_ids": source_ids, "source_mask": source_mask, "target_ids": y}