transformers/tests/models/qwen3_moe/test_modeling_qwen3_moe.py
2025-04-22 11:07:34 +01:00

508 lines
22 KiB
Python

# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Qwen3MoE model."""
import gc
import unittest
import pytest
from transformers import AutoTokenizer, Qwen3MoeConfig, is_torch_available, set_seed
from transformers.testing_utils import (
backend_empty_cache,
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
Qwen3MoeForCausalLM,
Qwen3MoeForQuestionAnswering,
Qwen3MoeForSequenceClassification,
Qwen3MoeForTokenClassification,
Qwen3MoeModel,
)
class Qwen3MoeModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=5,
max_window_layers=3,
use_sliding_window=True,
sliding_window=50,
num_attention_heads=4,
num_key_value_heads=2,
head_dim=16,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
expert_interval=1,
moe_intermediate_size=12,
num_experts_per_tok=2,
num_experts=8,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
bos_token_id=1,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.max_window_layers = max_window_layers
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.scope = scope
self.expert_interval = expert_interval
self.moe_intermediate_size = moe_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return Qwen3MoeConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
max_window_layers=self.max_window_layers,
use_sliding_window=self.use_sliding_window,
sliding_window=self.sliding_window,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
head_dim=self.head_dim,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
expert_interval=self.expert_interval,
moe_intermediate_size=self.moe_intermediate_size,
num_experts_per_tok=self.num_experts_per_tok,
num_experts=self.num_experts,
norm_topk_prob=self.norm_topk_prob,
output_router_logits=self.output_router_logits,
router_aux_loss_coef=self.router_aux_loss_coef,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
bos_token_id=self.bos_token_id,
)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Qwen3Moe
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = Qwen3MoeModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTest with Mistral->Qwen3Moe
class Qwen3MoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
Qwen3MoeModel,
Qwen3MoeForCausalLM,
Qwen3MoeForSequenceClassification,
Qwen3MoeForTokenClassification,
Qwen3MoeForQuestionAnswering,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": Qwen3MoeModel,
"text-classification": Qwen3MoeForSequenceClassification,
"token-classification": Qwen3MoeForTokenClassification,
"text-generation": Qwen3MoeForCausalLM,
"zero-shot": Qwen3MoeForSequenceClassification,
"question-answering": Qwen3MoeForQuestionAnswering,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
return True
def setUp(self):
self.model_tester = Qwen3MoeModelTester(self)
self.config_tester = ConfigTester(self, config_class=Qwen3MoeConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_torch_fx_output_loss(self):
super().test_torch_fx_output_loss()
def test_Qwen3Moe_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = Qwen3MoeForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Qwen3Moe_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = Qwen3MoeForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Qwen3Moe_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = Qwen3MoeForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_token_classification_model with Llama->Qwen3Moe,llama->Qwen3Moe
def test_Qwen3Moe_token_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
model = Qwen3MoeForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
self.assertEqual(
result.logits.shape,
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence_right_padding(self):
self.skipTest(reason="Qwen3Moe flash attention does not support right padding")
# Ignore copy
def test_load_balancing_loss(self):
r"""
Let's make sure we can actually compute the loss and do a backward on it.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.num_experts = 8
config.expert_interval = 2
config.output_router_logits = True
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = Qwen3MoeForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask)
self.assertEqual(result.router_logits[0].shape, (91, config.num_experts))
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
# First, we make sure that adding padding tokens doesn't change the loss
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
pad_length = 1000
# Add padding tokens (assume that pad_token_id=1) to input_ids
padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
padded_attention_mask = padded_input_ids.ne(1).to(torch_device)
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
# We make sure that the loss of includding padding tokens != the loss without padding tokens
# if attention_mask=None --> we don't exclude padding tokens
include_padding_result = model(padded_input_ids, attention_mask=None)
# This is to mimic torch.testing.assert_not_close
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
@require_torch
class Qwen3MoeIntegrationTest(unittest.TestCase):
@slow
def test_model_15b_a2b_logits(self):
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-15B-A2B-Base", device_map="auto")
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
with torch.no_grad():
out = model(input_ids).logits.float().cpu()
# Expected mean on dim = -1
EXPECTED_MEAN = torch.tensor([[-1.1184, 1.1356, 9.2112, 8.0254, 5.1663, 7.9287, 8.9245, 10.0671]])
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
# slicing logits[0, 0, 0:30]
EXPECTED_SLICE = torch.tensor([7.5938, 2.6094, 4.0312, 4.0938, 2.5156, 2.7812, 2.9688, 1.5547, 1.3984, 2.2344, 3.0156, 3.1562, 1.1953, 3.2500, 1.0938, 8.4375, 9.5625, 9.0625, 7.5625, 7.5625, 7.9062, 7.2188, 7.0312, 6.9375, 8.0625, 1.7266, 0.9141, 3.7969, 5.3438, 3.9844]) # fmt: skip
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
def test_model_15b_a2b_generation(self):
EXPECTED_TEXT_COMPLETION = (
"""To be or not to be, that is the question. Whether 'tis nobler in the mind to suffer the sl"""
)
prompt = "To be or not to"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-15B-A2B-Base", use_fast=False)
model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-15B-A2B-Base", device_map="auto")
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()
@require_bitsandbytes
@slow
@require_flash_attn
@pytest.mark.flash_attn_test
def test_model_15b_a2b_long_prompt(self):
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
# An input with 4097 tokens that is above the size of the sliding window
input_ids = [1] + [306, 338] * 2048
model = Qwen3MoeForCausalLM.from_pretrained(
"Qwen/Qwen3-15B-A2B-Base",
device_map="auto",
load_in_4bit=True,
attn_implementation="flash_attention_2",
)
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
# Assisted generation
assistant_model = model
assistant_model.generation_config.num_assistant_tokens = 2
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
del assistant_model
del model
backend_empty_cache(torch_device)
gc.collect()
@slow
@require_torch_sdpa
def test_model_15b_a2b_long_prompt_sdpa(self):
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
# An input with 4097 tokens that is above the size of the sliding window
input_ids = [1] + [306, 338] * 2048
model = Qwen3MoeForCausalLM.from_pretrained(
"Qwen/Qwen3-15B-A2B-Base",
device_map="auto",
attn_implementation="sdpa",
)
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
# Assisted generation
assistant_model = model
assistant_model.generation_config.num_assistant_tokens = 2
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
generated_ids = assistant_model.generate(input_ids, max_new_tokens=4, temperature=0)
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
del assistant_model
backend_empty_cache(torch_device)
gc.collect()
EXPECTED_TEXT_COMPLETION = (
"""To be or not to be, that is the question. Whether 'tis nobler in the mind to suffer the sl"""
)
prompt = "To be or not to"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-15B-A2B-Base", use_fast=False)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
def test_speculative_generation(self):
EXPECTED_TEXT_COMPLETION = (
"To be or not to be, that is the question: whether 'tis nobler in the mind to suffer the sl"
)
prompt = "To be or not to"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-15B-A2B-Base", use_fast=False)
model = Qwen3MoeForCausalLM.from_pretrained(
"Qwen/Qwen3-15B-A2B-Base", device_map="auto", torch_dtype=torch.float16
)
assistant_model = Qwen3MoeForCausalLM.from_pretrained(
"Qwen/Qwen3-15B-A2B-Base", device_map="auto", torch_dtype=torch.float16
)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
# greedy generation outputs
set_seed(0)
generated_ids = model.generate(
input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=assistant_model
)
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
del model
backend_empty_cache(torch_device)
gc.collect()