mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
508 lines
22 KiB
Python
508 lines
22 KiB
Python
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Qwen3MoE model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer, Qwen3MoeConfig, is_torch_available, set_seed
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Qwen3MoeForCausalLM,
|
|
Qwen3MoeForQuestionAnswering,
|
|
Qwen3MoeForSequenceClassification,
|
|
Qwen3MoeForTokenClassification,
|
|
Qwen3MoeModel,
|
|
)
|
|
|
|
|
|
class Qwen3MoeModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=64,
|
|
num_hidden_layers=5,
|
|
max_window_layers=3,
|
|
use_sliding_window=True,
|
|
sliding_window=50,
|
|
num_attention_heads=4,
|
|
num_key_value_heads=2,
|
|
head_dim=16,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
expert_interval=1,
|
|
moe_intermediate_size=12,
|
|
num_experts_per_tok=2,
|
|
num_experts=8,
|
|
norm_topk_prob=False,
|
|
output_router_logits=False,
|
|
router_aux_loss_coef=0.001,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.max_window_layers = max_window_layers
|
|
self.use_sliding_window = use_sliding_window
|
|
self.sliding_window = sliding_window
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.head_dim = head_dim
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.scope = scope
|
|
self.expert_interval = expert_interval
|
|
self.moe_intermediate_size = moe_intermediate_size
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.num_experts = num_experts
|
|
self.norm_topk_prob = norm_topk_prob
|
|
self.output_router_logits = output_router_logits
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
|
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return Qwen3MoeConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
max_window_layers=self.max_window_layers,
|
|
use_sliding_window=self.use_sliding_window,
|
|
sliding_window=self.sliding_window,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
head_dim=self.head_dim,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
expert_interval=self.expert_interval,
|
|
moe_intermediate_size=self.moe_intermediate_size,
|
|
num_experts_per_tok=self.num_experts_per_tok,
|
|
num_experts=self.num_experts,
|
|
norm_topk_prob=self.norm_topk_prob,
|
|
output_router_logits=self.output_router_logits,
|
|
router_aux_loss_coef=self.router_aux_loss_coef,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
)
|
|
|
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Qwen3Moe
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = Qwen3MoeModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTest with Mistral->Qwen3Moe
|
|
class Qwen3MoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
Qwen3MoeModel,
|
|
Qwen3MoeForCausalLM,
|
|
Qwen3MoeForSequenceClassification,
|
|
Qwen3MoeForTokenClassification,
|
|
Qwen3MoeForQuestionAnswering,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Qwen3MoeModel,
|
|
"text-classification": Qwen3MoeForSequenceClassification,
|
|
"token-classification": Qwen3MoeForTokenClassification,
|
|
"text-generation": Qwen3MoeForCausalLM,
|
|
"zero-shot": Qwen3MoeForSequenceClassification,
|
|
"question-answering": Qwen3MoeForQuestionAnswering,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
return True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Qwen3MoeModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Qwen3MoeConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_torch_fx_output_loss(self):
|
|
super().test_torch_fx_output_loss()
|
|
|
|
def test_Qwen3Moe_sequence_classification_model(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
|
model = Qwen3MoeForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Qwen3Moe_sequence_classification_model_for_single_label(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.problem_type = "single_label_classification"
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
|
model = Qwen3MoeForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Qwen3Moe_sequence_classification_model_for_multi_label(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.problem_type = "multi_label_classification"
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor(
|
|
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
|
|
).to(torch.float)
|
|
model = Qwen3MoeForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_token_classification_model with Llama->Qwen3Moe,llama->Qwen3Moe
|
|
def test_Qwen3Moe_token_classification_model(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
|
|
model = Qwen3MoeForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
|
|
self.assertEqual(
|
|
result.logits.shape,
|
|
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="Qwen3Moe flash attention does not support right padding")
|
|
|
|
# Ignore copy
|
|
def test_load_balancing_loss(self):
|
|
r"""
|
|
Let's make sure we can actually compute the loss and do a backward on it.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.num_experts = 8
|
|
config.expert_interval = 2
|
|
config.output_router_logits = True
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
model = Qwen3MoeForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask)
|
|
self.assertEqual(result.router_logits[0].shape, (91, config.num_experts))
|
|
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
|
|
|
|
# First, we make sure that adding padding tokens doesn't change the loss
|
|
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
|
|
pad_length = 1000
|
|
# Add padding tokens (assume that pad_token_id=1) to input_ids
|
|
padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
|
|
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
|
|
padded_attention_mask = padded_input_ids.ne(1).to(torch_device)
|
|
|
|
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
|
|
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
|
|
|
|
# We make sure that the loss of includding padding tokens != the loss without padding tokens
|
|
# if attention_mask=None --> we don't exclude padding tokens
|
|
include_padding_result = model(padded_input_ids, attention_mask=None)
|
|
|
|
# This is to mimic torch.testing.assert_not_close
|
|
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
|
|
|
|
|
|
@require_torch
|
|
class Qwen3MoeIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_15b_a2b_logits(self):
|
|
input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
|
|
model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-15B-A2B-Base", device_map="auto")
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
with torch.no_grad():
|
|
out = model(input_ids).logits.float().cpu()
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor([[-1.1184, 1.1356, 9.2112, 8.0254, 5.1663, 7.9287, 8.9245, 10.0671]])
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([7.5938, 2.6094, 4.0312, 4.0938, 2.5156, 2.7812, 2.9688, 1.5547, 1.3984, 2.2344, 3.0156, 3.1562, 1.1953, 3.2500, 1.0938, 8.4375, 9.5625, 9.0625, 7.5625, 7.5625, 7.9062, 7.2188, 7.0312, 6.9375, 8.0625, 1.7266, 0.9141, 3.7969, 5.3438, 3.9844]) # fmt: skip
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-4, atol=1e-4)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@slow
|
|
def test_model_15b_a2b_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"""To be or not to be, that is the question. Whether 'tis nobler in the mind to suffer the sl"""
|
|
)
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-15B-A2B-Base", use_fast=False)
|
|
model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-15B-A2B-Base", device_map="auto")
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@require_bitsandbytes
|
|
@slow
|
|
@require_flash_attn
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_15b_a2b_long_prompt(self):
|
|
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
|
|
# An input with 4097 tokens that is above the size of the sliding window
|
|
input_ids = [1] + [306, 338] * 2048
|
|
model = Qwen3MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen3-15B-A2B-Base",
|
|
device_map="auto",
|
|
load_in_4bit=True,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
# Assisted generation
|
|
assistant_model = model
|
|
assistant_model.generation_config.num_assistant_tokens = 2
|
|
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
del assistant_model
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
@slow
|
|
@require_torch_sdpa
|
|
def test_model_15b_a2b_long_prompt_sdpa(self):
|
|
EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
|
|
# An input with 4097 tokens that is above the size of the sliding window
|
|
input_ids = [1] + [306, 338] * 2048
|
|
model = Qwen3MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen3-15B-A2B-Base",
|
|
device_map="auto",
|
|
attn_implementation="sdpa",
|
|
)
|
|
input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
|
|
generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
# Assisted generation
|
|
assistant_model = model
|
|
assistant_model.generation_config.num_assistant_tokens = 2
|
|
assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
|
|
generated_ids = assistant_model.generate(input_ids, max_new_tokens=4, temperature=0)
|
|
self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())
|
|
|
|
del assistant_model
|
|
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"""To be or not to be, that is the question. Whether 'tis nobler in the mind to suffer the sl"""
|
|
)
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-15B-A2B-Base", use_fast=False)
|
|
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@slow
|
|
def test_speculative_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = (
|
|
"To be or not to be, that is the question: whether 'tis nobler in the mind to suffer the sl"
|
|
)
|
|
prompt = "To be or not to"
|
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-15B-A2B-Base", use_fast=False)
|
|
model = Qwen3MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen3-15B-A2B-Base", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
assistant_model = Qwen3MoeForCausalLM.from_pretrained(
|
|
"Qwen/Qwen3-15B-A2B-Base", device_map="auto", torch_dtype=torch.float16
|
|
)
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
|
|
|
|
# greedy generation outputs
|
|
set_seed(0)
|
|
generated_ids = model.generate(
|
|
input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=assistant_model
|
|
)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
del model
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|