mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* move old s2s scripts to legacy * add the tests back * proper rename * restore * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Stas Bekman <stas@stason.org> Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
40 lines
1.5 KiB
Python
Executable File
40 lines
1.5 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fire
|
|
|
|
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
|
|
def save_randomly_initialized_version(config_name: str, save_dir: str, **config_kwargs):
|
|
"""Save a randomly initialized version of a model using a pretrained config.
|
|
Args:
|
|
config_name: which config to use
|
|
save_dir: where to save the resulting model and tokenizer
|
|
config_kwargs: Passed to AutoConfig
|
|
|
|
Usage::
|
|
save_randomly_initialized_version("facebook/bart-large-cnn", "distilbart_random_cnn_6_3", encoder_layers=6, decoder_layers=3, num_beams=3)
|
|
"""
|
|
cfg = AutoConfig.from_pretrained(config_name, **config_kwargs)
|
|
model = AutoModelForSeq2SeqLM.from_config(cfg)
|
|
model.save_pretrained(save_dir)
|
|
AutoTokenizer.from_pretrained(config_name).save_pretrained(save_dir)
|
|
return model
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(save_randomly_initialized_version)
|